高精度微震定位采场支承压力分布特征

(1.西安科技大学 地质与环境学院,陕西 西安 710054; 2.中煤科工集团西安研究院有限公司,陕西 西安 710077)

支承压力; 微地震监测; 微震定位

Abutment pressure distribution based on high-precision microseismic positioning
CONG Sen1,CHENG Jian-yuan2,LI Xin-hu1,WANG Yun-hong2,WANG Bao-li2,WU Hai2

(1.College of Geology and Environment,Xi'an University of Science and Technology,Xi'an 710054,China; 2.Xi'an Research Institute of China Coal Technology & Engineering Group Corp,Xi'an 710077,China)

abutment pressure; microseismic monitoring; microseismic source location

DOI: 10.13800/j.cnki.xakjdxxb.2019.0409

备注

为定量分析煤矿采场支承压力分布特征,采用微地震监测技术对采场支承压力进行了研究。提出了一种能够显著提高震源定位精度的速度模型反演方法,构建了求解分层速度模型的目标函数。在陕西省境内某矿布置井地联合微震监测系统,并采用标定炮的方式验证了水平分层速度模型井地联合监测方案的定位精度明显高于近水平单一速度模型监测方案。采用水平分层速度模型对监测区域内微震事件进行高精度定位,并结合矿山压力理论,对采场支承压力分布规律与微震事件频次、能量之间的特征进行了研究。结果 表明:正常回采过程中受采动影响的超前支承压力范围是工作面前方0~90 m,工作面前方40~70 m范围内为高应力集中区,上、下顺槽的侧向支承压力影响范围分别为0~70 m和0~80 m; 研究结果为微地震监测技术在矿山工程领域的应用提供了一定的参考依据。

In order to quantitatively analyze the characteristics of abutment pressure distribution in coal stope,a study is made of the abutment pressure of stope using microseismic monitoring techniques.A new inversion method of velocity model is proposed in order to improve the accuracy of microseismic location,and the objective function for solving stratified velocity model is constructed as well.Mine-ground joint microseismic monitoring system is arranged in a certain mine in Shaanxi Province.By using the method of calibration blasting,it is verified that the positioning accuracy of the horizontal stratified velocity model is obviously higher than that of the near horizontal single velocity model.Horizontal stratified velocity model is adopted to locate microseismic events with higher accuracy in the monitored area.With the theory of mine pressure in view,the characteristics of the distribution of abutment pressure in stope and the frequency and the energy of microseismic events are examined.The results show that:in normal mining process,the range of lead abutment pressure affected by mining movement is 0~90 m in front of the working face,and the range of 40~70 m ahead of the working face is a high stress concentration area with the influenced range of the lateral abutment pressure on the upper and lower roadways being 0~70 m and 0~80 m respectively.The results provide a reference to the application of microseismic monitoring technology in the field of mine engineering.