[1]闫小乐,郝丽梅,叶临峰,等.模型参数对开口空心球超材料透射行为的影响[J].西安科技大学学报,2020,(03):512-517.[doi:10.13800/j.cnki.xakjdxxb.2020.0319]
 YAN Xiao-le,HAO Li-mei,YE Lin-feng,et al.Effects of model parameters on the transmission property of acoustic metamaterial with split hollow sphere[J].Journal of Xi'an University of Science and Technology,2020,(03):512-517.[doi:10.13800/j.cnki.xakjdxxb.2020.0319]
点击复制

模型参数对开口空心球超材料透射行为的影响(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2020年03期
页码:
512-517
栏目:
出版日期:
2020-05-15

文章信息/Info

Title:
Effects of model parameters on the transmission property of acoustic metamaterial with split hollow sphere
文章编号:
1672-9315(2020)03-0512-06
作者:
闫小乐郝丽梅叶临峰季佳余解 忧
(西安科技大学 理学院,陕西 西安 710054)
Author(s):
YAN Xiao-leHAO Li-meiYE Lin-fengJI Jia-yuXIE You
(College of Sciences,Xi'an University of Science and Technology,Xi'an 710054,China)
关键词:
声学超材料 模型参数 透射谱 等效模量 开口空心球
Keywords:
acoustic metamaterial model parameters transmission effective modulus split hollow sphere
分类号:
TB 132
DOI:
10.13800/j.cnki.xakjdxxb.2020.0319
文献标志码:
A
摘要:
为了探究模型参数对开口空心球(Split Hollow Spheres,SHS)超材料声学透射行为的作用机理,采用声学有限元方法(FEM)模拟了SHS超材料结构单元,计算球壳材料杨氏模量、泊松比、密度以及环境温度和气体密度等模型参数发生变化时的声透射谱,并推导出相应结构单元的等效模量值,最后将各参数对透射谱和等效模量的影响进行比较。结果表明:当SHS球壳材料的杨氏模量增大到2×108Pa时,声透射谱中阻带峰值和负等效模量频带同时向高频方向移动,透射阻带宽度保持不变; 球壳材料的泊松比和密度对透射阻带和负等效模量频带无明显影响; 当环境温度逐渐升高时,阻带峰值和负等效模量频带同时向高频方向移动,透射阻带宽度保持不变; 当气体密度逐渐增大时,阻带峰值向低频方向移动且幅值变小,透射阻带宽度变窄,同时负等效模量频带向低频方向移动且幅值变小。研究发现,在球壳的材料参数和环境因素中杨氏模量、温度和气体介质的密度对SHS结构单元透射行为的影响尤为突出。
Abstract:
In order to study the mechanism of the model parameters on the transmission properties of the split hollow spheres(SHS),the unit structure of SHS was simulated by the acoustic finite element method.The acoustic transmission spectra were calculated under the parameters of the Young's modulus,the density,the Poisson's ratio of the shell of SHS,the ambient temperature and the gas density by which the corresponding effective modulus were also deduced and compared.The results show that when the Young's modulus of the shell increases to 2×108Pa,the peak of the stopbands of transmission spectrum and the frequency region of negative effective modulus will move to high frequency,and the bandwidths of stopbands remains the same.The Poisson's ratio and the density of the shell have no apparent influence on the stopbands of transmission spectrum and the frequency region of the negative effective modulus.Furthermore,when the ambient temperature increases gradually,the peak of the stopbands and the frequency region of negative effective modulus will move to high frequency with the bandwidths of stopbands unchanged.Finally,as the gas density increases gradually,the peak of the stopbands moves to the low frequency and the amplitude becomes smaller; the width of the stopbands narrows,the frequency region of the negative effective modulus moves to the low frequency and the amplitude also becomes smaller.It is found that such parameters such as Young's modulus of the shell,ambient temperature and gas density play important roles in the transmission properties of SHS.

参考文献/References:

[1] Dierre D.Acoustic metamaterials and phononic crystals[M].New York:Springer,2013. [2]温激鸿,蔡 力,郁殿龙,等.声学超材料基础理论与应用[M].北京:科学出版社,2018. [3]Sigalas M M,Economou E N.Elastic and acoustic wave band structure[J].Journal of Sound and Vibration,1992,158(2):377-382. [4]Kushwaha M,Halevi P,Dobrzynski L,et al.Acoustic band structure of periodic elastic composites[J].Physical Review Letters,1993,71(13):2022-2025. [5]Martinez-Sala,R,Sancho J,Sánchez-Pérez J,et al.So-und attenuation by sculpture[J].Nature,1995,378:241-243. [6]LIU Zheng-you,ZHANG Xi-xiang,MAO Yi-wei,et al.Locally resonant sonic materials[J].Science,2000,289(5485):1734-1736. [7]LIU Zheng-you,CHAN C T,SHENG Ping.Analytical model of phononic crystals with local resonances[J].Physical Review B,2005,71(1):14103. [8]Li Jensen,Chan Che.Double-negative acoustic metamaterial[J].Physical Review E,2004,70(12):55602. [9]Yang S X,Page J H,Liu Z Y,et al.Focusing of sound in a 3D phononic crystal[J].Physical Review Letters,2004,93(8):24301. [10]Zhang S,Yin L L,Fang Nicholas.Focusing ultrasound with an acoustic metamaterial network[J].Physical Review Letters,2009,102(19):194301. [11]Ivansson Sven.Anechoic coatings obtained from two-and three-dimensional monopole resonance diffraction grating[J].The Journal of the Acoustical Society of America,2012,131(4):2622-2637. [12]WANG Xiao-le,LUO Xu-dong,Zhao Hui,et al.Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials[J].Applied Physics letters,2018,11(2):21901. [13]Tsang Mankei,Psaltis Demetri.Magnifying perfect lens and superlens design by coordinate transfor-mation[J].Physical Review B,2007,77(9):35122. [14]陆慧颖,宋刚永,程 强.二维声学超材料透镜的设计与实验[J].南京大学学报(自然科学),2015,51(6):1114-1119. LU Hui-ying,SONG Gang-yong,CHENG Qiang.Design and measurements of a two dimensional metamaterial acoustic lens[J].Journal of Nanjing University(Natural Sciences),2015,51(6):1114-1119. [15]Steven Cummer,Schurig David.One path to acoustic cloaking[J].New Journal of Physics,2007,9(3):45. [16]沈惠杰,温激鸿,郁殿龙,等.基于主动声学超材料的圆柱声隐身斗篷设计研究[J].物理学报,2012,61(13):230-237. SHEN Hui-jie,WEN Ji-hong,YU Dian-long,et al.Research on a cylindrical cloak with active acoustic metamaterial layers[J].Acta Physica Sinica,2012,61(13):230-237. [17]Fang Nicholas,XI Dong-juan,XU Jian-yi,et al.Ultrasonic metamaterials with negative modulus[J].Nature Materials,2006,5(6):452-456. [18]DING Yi-qun,LIU Zheng-you,QIU Chun-yin,et al.Metamaterial with simultaneously negative bulk modulus and mass density[J].Physical Review Letters,2007,99(9):093904. [19]Lee Sam Hyeon,Park Choon Mahn,Seo Yong An,et al.Composite acoustic medium with simultaneously negative density and modulus[J].Physical Review Letters,2010,104(5):173-176. [20]HU Xin-hua,HO Kai-ming,Chan C T,et al.Homogenization of acoustic metamaterials of Helmholtz resonators in fluid[J].Physical Review B,2008,77(17):172301. [21]Guenneau S,Movchan A,Petursson G,et al.Acoustic metamaterials for sound focusing and confinement[J].New Journal of Physics,2007(9):399-415. [22]Cheng Ying,Xu J Y,Liu X J.Broad forbidden bands in parallel-coupled locally resonant ultrasonic metamaterials[J].Applied Physics Letters,2008,92:51913. [23]Lee Sam-hyeon,Park Choon-mahn,Seo Yong-Mun,et al.Acoustic metamaterial with negative modulus[J].Journal of Physics:Condensed Matter,2009,21(17):175704. [24]DING Chang-lin,HAO Li-mei,ZHAO Xiao-peng.Two-dimensional acoustic metamaterial with negative modulus[J].Journal of Applied Physics,2010,108(7):74911. [25]DING Chang-lin,ZHAO Xiao-peng,CHEN Huai-jun,et al.Reflected wavefronts modulation with acoustic metasurface based on double-split hollow sphere[J].Applied Physics A,2015,120(2):487-493. [26]HAO Li-mei,DING Chang-lin,ZHAO Xiao-peng.Tunable acoustic metamaterial with negative modulus[J].Applied Physics A,2012,106(4):807-811. [27]HAO Li-mei,DING Chang-lin,ZHAO Xiao-peng.Design of a passive controllable negative modulus metamaterial with a split hollow sphere of multiple hole[J].Journal of Vibration and Acoustics,2013,135(4):41008. [28]YAN Xiao-le,HAO Li-mei,MEN Mei-ling,et al.The effect of geometrical parameters on resonance characteristics of acoustic metamaterials with negative effective modulus[J].Advances in Condensed Matter Physics,2018(9):1-8.

相似文献/References:

[1]张慧梅,彭 川,杨更社,等.冻融损伤岩石的强度准则研究[J].西安科技大学学报,2017,(02):154.[doi:10.13800/j.cnki.xakjdxxb.2017.0202]
 ZHANG Hui-mei,PENG Chuan,YANG Geng-she,et al.Study on strength criterion of freezing-thawing damage rock[J].Journal of Xi'an University of Science and Technology,2017,(03):154.[doi:10.13800/j.cnki.xakjdxxb.2017.0202]
[2]孟祥振,张慧梅,康晓革.含孔隙冻融岩石的损伤本构模型[J].西安科技大学学报,2019,(04):138.[doi:10.13800/j.cnki.xakjdxxb.2019.0417]
 MENG Xiang-zhen,ZHANG Hui-mei,KANG Xiao-ge.Damage constitutive model of porous rock under freeze-thaw[J].Journal of Xi'an University of Science and Technology,2019,(03):138.[doi:10.13800/j.cnki.xakjdxxb.2019.0417]

备注/Memo

备注/Memo:
收稿日期:2020-01-11 责任编辑:高 佳
基金项目:国家自然科学基金(11304243); 陕西省自然科学基础研究计划(2014JQ1039)
通信作者:解 忧(1977-),男,安徽灵璧人,博士,教授, E-mail:xieyou@xust.edu.cn
更新日期/Last Update: 2020-05-15