[1]刘 金,宋红军.基于二次约束二次规划的窗函数设计方法[J].西安科技大学学报,2020,(03):458-463.[doi:10.13800/j.cnki.xakjdxxb.2020.0311]
 LIU Jin,SONG Hong-jun.A window function design method via QCQP approach[J].Journal of Xi'an University of Science and Technology,2020,(03):458-463.[doi:10.13800/j.cnki.xakjdxxb.2020.0311]
点击复制

基于二次约束二次规划的窗函数设计方法(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2020年03期
页码:
458-463
栏目:
出版日期:
2020-05-15

文章信息/Info

Title:
A window function design method via QCQP approach
文章编号:
1672-9315(2020)03-0458-06
作者:
刘 金12宋红军1
(1.中国科学院 空天信息创新研究院,北京 100094; 2.中国科学院大学 电子电气与通信工程学院,北京 100049)
Author(s):
LIU Jin12SONG Hong-jun1
(1.Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China; 2.School of Electronic Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
关键词:
雷达信号处理 凸优化 多目标优化 窗函数设计 成像质量
Keywords:
radar signal processing convex optimization multi-objective optimization window function design imaging quality
分类号:
TN 957.51
DOI:
10.13800/j.cnki.xakjdxxb.2020.0311
文献标志码:
A
摘要:
为降低高功率雷达系统中脉冲压缩后输出的高峰值旁瓣进而提高成像质量,通常的方法是在接收端进行加窗处理,在信噪比损失、积分旁瓣和主瓣宽度上做出一定权衡。为了进一步提升窗函数的成像性能,以不同的目标函数和约束条件构建能够高效准确求解的凸优化模型来设计优化窗函数。建立了以优化峰值旁瓣为目标的二次约束二次规划的凸优化模型,并给出了优化积分旁瓣能量的凸优化模型。通过线性加权求和,对峰值旁瓣、信噪比损失和积分旁瓣能量的线性组合得到的结果作为目标函数建立了多目标凸优化模型。通过对凸优化问题求解,得到的优化窗函数在峰值旁瓣、积分旁瓣、信噪比损失和主瓣宽度上均优于或不劣于在雷达系统中常用的性能优良的Taylor窗函数。仿真结果表明,优化窗函数能够比Taylor窗函数提供更好的性能。
Abstract:
To lower the high peak sidelobe ratio(PSLR)generated from the output of pulse compression in the high power radar system and thus improve the imaging quality,a common method is to apply window function at the reception side,which can make a trade off among the signal-to-noise ratio(SNR)loss,integrated sidelobe ratio(ISLR)and mainlobe width.In order to further improve the imaging performance of the window function,a convex optimization modelwas proposed to design the optimized window function,and this model was constructed by usingvarious objective functions and constraints which can be solved efficiently and effectively.First,a quadratically constrained quadratic program(QCQP)convex optimization model was built to optimize the PSLR,and based on this model,a convex optimization model aiming at optimizing the integrated sidelobe energy was proposed.By linear weighted summation,a multi-objective convex optimization model was proposed aiming at optimizing the linear combination of PSLR,SNR loss and the integrated sidelobe energy.By solving the convex optimization problem,the optimized window function can be obtained,which can provide better or no worse PSLR,ISLR,SNR loss and mainlobe width than the well performed Taylor window.The results show that the optimized window functions can offer better performance than Taylor window function.

参考文献/References:

[1] Henke D,Mccormick P,Blunt S D,et al.Practical aspects of optimal mismatch filtering and adaptive pulse compression for FM waveforms[C]//2015 IEEE Radar Conference(RadarCon).Arlington,VA,USA:IEEE,2015:1149-1155. [2]Kay S M.Fundamentals of statistical signal processing[M].New Jersey:Prentice Hall PTR,1993. [3]Wang Y,Yang W,Chen J,et al.Azimuth sidelobes suppression using multi-azimuth angle synthetic aperture radar images[J].Sensors,2019,19(12):2764. [4]Levanon N,Mozeson E.Radar signals[M].New Jersey:John Wiley & Sons,2004. [5]Doerry A W.Catalog of window taper functions for sidelobe control[R].California,USA:Sandia National Laboratories Report SAND2017-4042,Unlimited Release,2017. [6]Kajenski P J.Mismatch filter design via convex optimization[J].IEEE Transactions on Aerospace and Electronic Systems,2016,52(4):1587-1591. [7]Davis M S,Lanterman A D.Minimum integrated sidelobe ratio filters for MIMO radar[J].IEEE Transactions on Aerospace and Electronic Systems,2015,51(1):405-416. [8]Cohen M N,Fox M R,Baden J M.Minimum peak sidelobe pulse compression codes[C]//IEEE International Conference on Radar.Arlington,VA,USA:IEEE,1990:633-638. [9]Griep K R,Ritcey J A,Burlingame J J.Poly-phase codes and optimal filters for multiple user ranging[J].IEEE Transactions on Aerospace and Electronic Systems,1995,31(2):752-767. [10]Blunt S D,Gerlach K.Adaptive pulse compression via MMSE estimation[J].IEEE Transactions on Aerospace and Electronic Systems,2006,42(2):572-584. [11]Cilliers J E,Smit J C.Pulse compression sidelobe reduction by minimization of Lp-norms[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):1238-1247. [12]Rabaste O,Savy L.Mismatched filter optimization via quadratic convex programming for radar applications[C]//2014 International Radar Conference.Lille,France:IEEE,2014:1-6. [13]Rabaste O,Savy L.Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[J].IEEE Transactions on Aerospace and Electronic Systems,2015,51(4):3107-3122. [14]Aittom KI T,Koivunen V.Mismatched filter design for radar waveforms by semidefinite relaxation[C]//2015 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Brisbane,QLD,Australia:IEEE,2015:2739-2743. [15]Blunt S D,Mokole E L.Overview of radar waveform diversity[J].IEEE Aerospace and Electronic Systems Magazine,2016,31(11):2-42. [16]Boyd S,Boyd S P,Vandenberghe L.Convex optimization[M].Cambridge:Cambridge University Press,2004. [17]Grant M C,Boyd S P.Graph implementations for nonsmooth convex programs[M].London:Springer,2008. [18]Moses R L,Ash J N.Recursive SAR imaging[C]//Algorithms for Synthetic Aperture Radar Imagery XV.Orlando,Florida,USA:International Society for Optics and Photonics,2008,6970:69700P. [19]Liu J,Wang W,Song H.Optimization of weighting window functions for SAR imaging via QCQP approach[J].Sensors,2020,20(2):419. [20]Doerry A W,Dickey F M,Romero L A.Windowing functions for SAR data with spectral gaps[C]//Algorithms for Synthetic Aperture Radar Imagery X.Orlando,Florida,USA:International Society for Optics and Photonics,2003,5095:54-65. [21]West R D,Gunther J H,Moon T K.Inverse problems-based maximum likelihood estimation of ground reflectivity for selected regions of interest from stripmap SAR data[J].IEEE Transactions on Aerospace and Electronic Systems,2016,52(6):2930-2939. [22]Wei L X,Li X,Fan R,et al.A hybrid multiobjective particle swarm optimization algorithm based on R2 indicator[J].IEEE Access,2018,6:14710-14721. [23]Emmerich M T M,Deutz A H.A tutorial on multiobjective optimization:fundamentals and evolutionary methods[J].Natural Computing,2018,17(3):585-609.

备注/Memo

备注/Memo:
收稿日期:2020-01-19 责任编辑:李克永
基金项目:国家重点研发计划(2017YFB0502700)
通信作者:宋红军(1968-),男,江苏南京人,博士,研究员,E-mail:hjsong@mail.ie.ac.cn
更新日期/Last Update: 2020-05-15