[1]王 飞,邢好运,李万春,等.中低阶煤的孔隙结构演化特征[J].西安科技大学学报,2020,(03):384-392.[doi:10.13800/j.cnki.xakjdxxb.2020.0302]
 WANG Fei,XING Hao-yun,LI Wan-chun,et al.Evolution characteristics of pore structure in medium and low rank coal[J].Journal of Xi'an University of Science and Technology,2020,(03):384-392.[doi:10.13800/j.cnki.xakjdxxb.2020.0302]
点击复制

中低阶煤的孔隙结构演化特征(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2020年03期
页码:
384-392
栏目:
出版日期:
2020-05-15

文章信息/Info

Title:
Evolution characteristics of pore structure in medium and low rank coal
文章编号:
1672-9315(2020)03-0384-09
作者:
王 飞邢好运李万春贺玖玖王若愚
(郑州大学 力学与安全工程学院,河南 郑州 450001)
Author(s):
WANG FeiXING Hao-yunLI Wan-chunHE Jiu-jiuWANG Ruo-yu
(School of Mechanics and Safety Engineering,Zhengzhou University,Zhengzhou 450001,China)
关键词:
安全科学与工程 中低阶煤 孔隙分布 孔形 分形维数
Keywords:
safety science and engineering medium and low rank coal pore distribution pore shape fractal dimension
分类号:
X 936
DOI:
10.13800/j.cnki.xakjdxxb.2020.0302
文献标志码:
A
摘要:
为研究煤化作用对煤中孔隙结构的影响,文中以3个中低阶煤为例,对其进行了镜质组反射率、工业分析、真密度、视密度、放散初速度和孔隙测定实验,从孔隙分布、孔形和分形特征3个角度展开讨论。结果表明:影响煤体孔隙发育的主要因素是成煤环境和赋存条件,而煤化作用在一定程度上也改变了煤中孔隙的分布,其降低了较大孔隙,促进了较小孔隙的发育; 任楼矿煤样(RL)整体上以圆柱孔和V形孔为主,园子沟煤样(YZG)在6.5~15 nm孔径范围内具有大量墨水瓶孔,平煤五矿煤样(PMW)在6.5~12 nm孔径范围内具有大量墨水瓶孔,同时3个煤样均具有大量的层间不平行的层状孔; 通过压汞数据获得的分形维数随变质程度的增加而减少,即较大孔隙的复杂性降低,而通过液氮吸附数据获得的分形维数随变质程度的增加先减小后增加,说明孔容和比表面积的数量决定了孔隙的复杂性,同时煤化作用也促进了微孔的发育,进而导致孔隙复杂性的提高,该结果与3个煤样的放散初速度表现一致。通过对中低阶煤孔隙演化特征的分析与探讨,能够为煤矿的安全生产、煤层气的有效利用以及二氧化碳地质封存提供理论指导。
Abstract:
In order to study the influence of coalification on the pore structure of coal, three medium-low-rank coal samples were taken as examples,and vitrinite reflectivity,proximate analysis,true density,apparent density and pores in coal were measured.The pore distribution,the pore shape and the fractal characteristics were analyzed in this paper.The results show that:Coal formation environment and occurrence condition are the main factors affecting pores in coal,and coalification changes the pore distribution in coal to some extent,which reduces larger pores and promotes the development of smaller pores.The Renlou coal sample(RL)is mainly composed of cylindrical and V-shaped pores.The Yuanzigou coal sample(YZG)has a large number of ink bottle pores with pore diameters from 6.5 to 15 nm.The Pingmeiwukuang coal sample(PMW)has a large number of ink bottle pores with pore diameters from 6.5 to 12 nm,and the three coal samples have a large number of layered pores that are not parallel between layers.The fractal dimensions from mercury intrusion data decrease with the increase of coalification degree.That is,the complexity of larger pores decreases.The fractal dimensions obtained by liquid nitrogen adsorption data decrease first and then increase with the increase of coalification degree.It indicates that the quantity of pore volume and specific surface area controls the complexity of pores.In addition,coalification also promotes the development of micropores,which in turn leads to an increase in pore complexity.The results are consistent with the initial velocity of gas desorption of three coal samples.The evolution characteristics of pore structure in medium and low rank coal were analyzed and discussed,which can provides theoretical guidance for the safe production of coal mines,the effective use of coalbed methane and the geological storage of CO2.

参考文献/References:

[1] 程远平,俞启香.中国煤矿区域性瓦斯治理技术的发展[J].采矿与安全工程学报,2007,24(4):383-390. CHENG Yuan-ping,YU Qi-xiang.Development of regional gas control technology for Chinese coalmines[J].Journal of Mining & Safety Engineering,2007,24(4):383-390. [2]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139. CHENG Yuan-ping,FU Jian-hua,YU Qi-xiang.Development of gas extraction technology in coal mines of China[J].Journal of Mining & Safety Engineering,2009,26(2):127-139. [3]谢和平,周宏伟,薛东杰,等.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报,2014,39(8):1391-1397. XIE He-ping,ZHOU Hong-wei,XUE Dong-jie,et al.Theory,technology and engineering of simultaneous exploitation of coal and gas in China[J].Journal of China Coal Society,2014,39(8):1391-1397. [4]LIU Xian-feng,HE Xue-qiu.Effect of pore characteristics on coalbed methane adsorption in middle-high rank coals[J].Adsorption,2017,23(1):3-12. [5]荆俊杰.煤体含水率对CO2驱替CH4影响的实验研究[D].太原:太原理工大学,2016. JING Jun-jie.Experimental study about the effect of coal moisture content on carbon dioxiede displacing coalbed methane[D].Taiyuan:Taiyuan University of Technology,2016. [6]JIANG Jing-yu,YANG Wei-hua,CHENG Yuan-ping,et al.Pore structure characterization of coal particles via MIP,N2and CO2adsorption:Effect of coalification on nanopores evolution[J].Powder Technology,2019,354:136-148. [7]NIE Bai-sheng,LIU Xian-feng,YANG Long-long,et al.Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J].Fuel,2015,158:908-917. [8]TAO Shu,CHEN Shi-da,TANG Da-zhen,et al.Material composition,pore structure and adsorption capacity of low-rank coals around the first coalification jump:a case of eastern Junggar Basin,China[J].Fuel,2018,211:804-815. [9]LI Yong,ZHANG Cheng,TANG Dazhen,et al.Coal pore size distributions controlled by the coalification process:an experimental study of coals from the Junggar,Ordos and Qinshui basins in China[J].Fuel,2017,206:352-363. [10]PAN Jie-nan,WANG Kai,HOU Quan-lin,et al.Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory[J].Fuel,2016,164:277-285. [11]XIN Fu-dong,XU Hao,TANG Da-zhen,et al.Pore structure evolution of low-rank coal in China[J].International Journal of Coal Geology,2019,205:126-139. [12]Neimark Alexander V.Calculating surface fractal dimensions of adsorbents[J].Adsorption Science & Technology,1990,7(4):210-219. [13]WANG Xiao-liang,HE Rong,CHEN Yong-li.Evolution of porous fractal properties during coal devolatilization[J].Fuel,2008,87(6):878-884. [14]WANG Cheng-yang,HAO Shi-xiong,SUN Wen-jing,et al.Fractal dimension of coal particles and their CH4adsorption[J].International Journal of Mining Science and Technology,2012,22(6):855-858. [15]王 聪,江成发,储 伟.煤的分形维数及其影响因素分析[J].中国矿业大学学报,2013,42(6):1009-1014. WANG Cong,JIANG Cheng-fa,CHU Wei.Fractal dimension of coals and analysis of its influencing factors[J].Journal of China University of Mining and Technology,2013,42(6):1009-1014. [16]刘高峰,张子戌,张小东,等.气肥煤与焦煤的孔隙分布规律及其吸附-解吸特征[J].岩石力学与工程学报,2009,28(8):1587-1592. LIU Gao-feng,ZHANG Zi-xu,ZHANG Xiao-dong,et al.Pore distribution regularity and absorption-desorption characteristics of gas coal and coking coal[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1587-1592. [17]Ehrburger-dolle Francoise,Lavanchy Andre,Stoeckli Fritz.Determination of the surface fractal dimension of active carbons by mercury porosimetry[J].Journal of Colloid and Interface Science,1994,166(2):451-461. [18]Ahmad A L,Mustafa N N N.Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel Halsey Hill(FHH)model[J].Journal of Colloid and Interface Science,2006,301(2):575-584. [19]ZHOU San-dong,LIU Da-meng,CAI Yi-dong,et al.Effects of the coalification jump on the petrophysical properties of lignite,subbituminous and high-volatile bituminous coals[J].Fuel,2017,199:219-228. [20]LIU Yu,ZHU Yan-ming,LIU Shi-min,et al.Molecular structure controls on micropore evolution in coal vitrinite during coalification[J].International Journal of Coal Geology,2018,199:19-30. [21]Mcmahon P J,Snook I K,Treimer W.The pore structure in processed victorian brown coal[J].Journal of Colloid and Interface Science,2002,252(1):177-183. [22]王 飞.煤的吸附解吸动力学特性及其在瓦斯参数快速测定中的应用[D].徐州:中国矿业大学,2016. WANG Fei.Kinetics characteristic of methane adsorption/desorption in coal and its application in the rapid determination of methane parameters[D].Xuzhou:China University of Mining and Technology,2016. [23]Rouquerol Jean,Rouquerol Francoise,Llewellyn Philip,et al.Adsorption by powders and porous solids:principles,methodology and applications[M].Poland:Academic press,2013. [24]WANG Fei,CHENG Yuan-ping,LU Shou-qing,et al.Influence of coalification on the pore characteristics of middle-high rank coal[J].Energy & Fuels,2014,28(9):5729-5736. [25]De Boer Jh,Van Den Heuvel A,Linsen B.Studies on pore systems in catalysts IV.The two causes of reversible hysteresis[J].Journal of Catalysis,1964,3(3):268-273. [26]CHEN Yue,TANG Da-zhen,XU Hao,et al.Pore and fracture characteristics of different rank coals in the eastern margin of the Ordos Basin,China[J].Journal of Natural Gas Science and Engineering,2015,26:1264-1277.

相似文献/References:

[1]秦忠诚,陈光波,李 谭,等.“AHP+熵权法”的CW-TOPSIS煤矿内因火灾评价模型[J].西安科技大学学报,2018,(02):193.[doi:10.13800/j.cnki.xakjdxxb.2018.0204]
 QIN Zhong-cheng,CHEN Guang-bo,LI Tan,et al.CW-TOPSIS mine internal caused fire evaluation model of “AHP+ entropy weight method”[J].Journal of Xi'an University of Science and Technology,2018,(03):193.[doi:10.13800/j.cnki.xakjdxxb.2018.0204]
[2]潘红宇,董晓刚,张天军,等.单轴压缩下松软煤样破裂损伤演化特性研究[J].西安科技大学学报,2018,(02):202.[doi:10.13800/j.cnki.xakjdxxb.2018.0205]
 PAN Hong-yu,DONG Xiao-gang,ZHANG Tian-jun,et al.Evolution characteristics of soft coal sample fracture damage under uniaxial compression[J].Journal of Xi'an University of Science and Technology,2018,(03):202.[doi:10.13800/j.cnki.xakjdxxb.2018.0205]
[3]姜 华,邵珅菲,宫武旗,等.叶片形状对对旋风机正反风性能影响[J].西安科技大学学报,2018,(02):230.[doi:10.13800/j.cnki.xakjdxxb.2018.0209]
 JIANG Hua,SHAO Shen-fei,GONG Wu-Qi,et al.Forward and reverse aerodynamic performance of different wing-shaped blades of a contra-rotating axial-flow fan[J].Journal of Xi'an University of Science and Technology,2018,(03):230.[doi:10.13800/j.cnki.xakjdxxb.2018.0209]
[4]林海飞,杨二豪,赵鹏翔,等.类岩石材料力学特性参数多元线性回归模型[J].西安科技大学学报,2018,(03):351.[doi:10.13800/j.cnki.xakjdxxb.2018.0302]
 LIN Hai-fei,YANG Er-hao,ZHAO Peng-xiang,et al.Multivariate linear regression model of the mechanical properties of rock-like materials[J].Journal of Xi'an University of Science and Technology,2018,(03):351.[doi:10.13800/j.cnki.xakjdxxb.2018.0302]
[5]赵大龙,田水承,王 璟,等.矿工大五人格特质对煤矿险兆事件上报的影响[J].西安科技大学学报,2018,(03):360.[doi:10.13800/j.cnki.xakjdxxb.2018.0303]
 ZHAO Da-long,TIAN Shui-cheng,WANG Jing,et al.Influence of miners'big-five personality trait on coal mine near-miss reporting[J].Journal of Xi'an University of Science and Technology,2018,(03):360.[doi:10.13800/j.cnki.xakjdxxb.2018.0303]
[6]李 品.中国能源供给安全影响因素研究[J].西安科技大学学报,2018,(03):403.[doi:10.13800/j.cnki.xakjdxxb.2018.0309]
 LI Pin.Influential factors of energy supply security of China[J].Journal of Xi'an University of Science and Technology,2018,(03):403.[doi:10.13800/j.cnki.xakjdxxb.2018.0309]
[7]张 锐,王 亮,高 杰,等.岩浆岩圈闭区煤层钻屑瓦斯解吸指标敏感性研究[J].西安科技大学学报,2018,(03):417.[doi:10.13800/j.cnki.xakjdxxb.2018.0311]
 ZHANG Rui,WANG Liang,GAO Jie,et al.Desorption index sensitivity of drilling cuttings of coal seams in igneous rock trap area[J].Journal of Xi'an University of Science and Technology,2018,(03):417.[doi:10.13800/j.cnki.xakjdxxb.2018.0311]
[8]司 鹄,赵剑楠,胡千庭.大数据理论下的煤与瓦斯突出事故致因分析[J].西安科技大学学报,2018,(04):515.[doi:10.13800/j.cnki.xakjdxxb.2018.0401 ]
 SI Hu,ZHAO Jian-nan,HU Qian-ting.Analysis of causes of coal and gas outburst accidents based on big data theory[J].Journal of Xi'an University of Science and Technology,2018,(03):515.[doi:10.13800/j.cnki.xakjdxxb.2018.0401 ]
[9]王亚超,魏子淇,王彩萍,等.黄铁矿对煤氧化表面官能团的影响[J].西安科技大学学报,2018,(04):585.[doi:10.13800/j.cnki.xakjdxxb.2018.0410 ]
 WANG Ya-chao,WEI Zi-qi,WANG Cai-ping,et al.Effects of pyrite on functional groups during coal oxidation[J].Journal of Xi'an University of Science and Technology,2018,(03):585.[doi:10.13800/j.cnki.xakjdxxb.2018.0410 ]
[10]张景飞,郭 倩,朱同功,等.多场耦合下煤岩渗透率演化规律——以平煤十矿为例[J].西安科技大学学报,2018,(05):713.[doi:10.13800/j.cnki.xakjdxxb.2018.0504]
 ZHANG Jing-fei,GUO Qian,ZHU Tong-gong,et al.Evolution of coal rock permeability with multiphysics coupling——taking PingMei No.10 mine as an example[J].Journal of Xi'an University of Science and Technology,2018,(03):713.[doi:10.13800/j.cnki.xakjdxxb.2018.0504]

备注/Memo

备注/Memo:
收稿日期:2019-11-08 责任编辑:杨泉林
基金项目:国家自然科学基金(51904272); 河南省高等学校重点科研项目计划(18A620003); 河南省博士后科研项目(001802001)
通信作者:王 飞(1989-),男,河南沈丘人,讲师,硕士生导师,E-mail:wangfeiwfyx@zzu.edu.cn
更新日期/Last Update: 2020-05-15