[1]杜媛英,李 明,任兴星.高雷诺数下不同湍流润滑模型对水润滑橡胶轴承润滑特性的影响[J].西安科技大学学报,2020,(02):321-329.
 DU Yuan-ying,LI Ming,REN Xing-xing.Effect of different turbulent lubrication models on the lubrication characteristicsof water-lubricated rubber bearings in high Reynolds number[J].Journal of Xi'an University of Science and Technology,2020,(02):321-329.
点击复制

高雷诺数下不同湍流润滑模型对水润滑橡胶轴承润滑特性的影响(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2020年02期
页码:
321-329
栏目:
出版日期:
2020-03-30

文章信息/Info

Title:
Effect of different turbulent lubrication models on the lubrication characteristicsof water-lubricated rubber bearings in high Reynolds number
文章编号:
1672-9315(2020)02-0321-09
作者:
杜媛英1李 明2任兴星3
(1.西安科技大学 工程训练中心,陕西 西安 710054; 2.西安科技大学 理学院,陕西 西安 710054; 3.平凉职业技术学院 建筑工程系,甘肃 平凉 744000)
Author(s):
DU Yuan-ying1LI Ming2REN Xing-xing3
(1.Engineering Training Center,Xi'an University of Science and Technology,Xi'an 710054,China; 2.College of Sciences,Xi'an University of Science and Technology,Xi'an 710054,China; 3.Department of Architectural Engineering,Pingliang Vocational and Technical College,Pingliang 744000,China)
关键词:
水润滑橡胶轴承 湍流模型 高雷诺数 转速 承载力
Keywords:
water-lubricated rubber bearings turbulence model high Reynolds number rotational speed bearing capacity
分类号:
TB 43
文献标志码:
A
摘要:
为研究高雷诺数运行工况下的水润滑橡胶轴承的润滑特性,采用4种不同的湍流润滑数学模型,利用有限差分法,首先分析了4种不同湍流模型下的雷诺数,水膜厚度,衬层变形及水膜压力分布规律; 然后对不同湍流润滑模型下的雷诺数随偏心率的变化规律进行了研究; 最后讨论了4种湍流润滑模型下的承载力和最大膜压随偏心率、转速和间隙比的变化。结果表明:4种湍流润滑模型下的衬层变形和最大膜压均大于层流润滑,其大小顺序为:青木弘-原田正躬模型>Ng-Pan湍流模型>Constantinescu湍流模型>Hirs湍流模型; 不同润滑模型下偏心率对雷诺数的影响不大。采用湍流润滑模型计算的承载力和膜压远大于层流润滑,层流假设不再适用高雷诺数下水润滑橡胶轴承的实际运行工况,同时在此工况下采用青木弘-原田正躬湍流润滑模型比其他3种润滑模型更为合理。随着偏心率的增大,承载力和最大膜压非线性增大; 随着转速的增大,承载力和膜压近似线性增大; 随着间隙比的增大,承载力非线性减小,膜压近似线性增大。
Abstract:
To study the lubrication characteristics of water-lubricated rubber bearings in high Reynolds number operating conditions,four different turbulent lubrication mathematical models were used,the distribution of Reynolds number,water film thickness,lining deformation and film pressure under four different turbulent lubrication models were analyzed usingthe finite difference method.Then the variation of Reynolds number with eccentricity under different turbulent lubrication models was investigated.Finally,the variation of the bearing capacity and maximum film pressure with eccentricity,rotating speed and clearance ratio under four turbulent lubrication models were discussed.The results show that the lining deformation and maximum film pressure of the four turbulent lubrication models are greater than that of laminar lubrication with their orders as follows:Aoki-harada turbulence model>Ng-Pan model>Constantinescu model>Hirs model; and the type of the lubrication model has slight effect on the Reynolds number.The bearing capacity and film pressure calculated by the turbulent lubrication model are far greater thanthose bythe laminar flow model,and the laminar flow assumption is no longer applicable to the actual operating conditions of the water-lubricated rubber bearings in high Reynolds number.And the aoki-harada turbulent lubrication theory is more reasonable than the other three lubrication models.With the increase of eccentricity,the bearing capacity and the maximum film pressure increase nonlinearly; with the increase of the rotational speed,the bearing capacity and pressure increase linearly; with the increase of the clearance ratio,the bearing capacityincrease nonlinearly,and the pressure increases approximately linearly.

参考文献/References:

[1] Taylor G I VIII.Stability of a viscous liquid contained between two rotating cylinders[J].Philosophical Transactions of the Royal Society of London.Series A,Containing Papers of a Mathematical or Physical Character,1923,223(605-615):289-343. [2]Taylor G I.The dispersion of matter in turbulent flow through a pipe[J].Proceedings of the Royal Society of London.Series A.Mathematical and Physical Sciences,1954,223(1155):446-468. [3]Taylor C M,Dowson D.Turbulent lubrication theory-application to design[J].Journal of Lubrication Technology,1974,96(1):36-46. [4]Constantinescu V N.On turbulent lubrication[J].Proceedings of the Institution of Mechanical Engineers,1959,173(1):881-900. [5]Constantinescu V N.Analysis of bearing operating in turbulent regime[J].Journal of Basic Engineering,1962,82:139-151. [6]Ng C W,Pan C H T.A linearized turbulent lubrication theory[J].Journal of Basic Engineering,1965,87:675-688. [7]Ng C W.Fluid dynamic foundation of turbulent lubrication theory[J].Wear,1964,7(4):311-321. [8]Elrod H G,Ng C W.A theory for turbulent fluid films and its application to bearings[J].Journal of Lubrication Technology,1967,89(3):346-362. [9]Hirs G G.A bulk-flow theory for turbulence in lubricant films[J].Journal of Lubrication Technology,1973,95:137-146. [10]青木弘,原田正躬.乱流域におけるジャーナル軸受の流体润滑理论[J].润滑,1971,16(5):348-356. [11]Meinkai Ho,Vohr J H.Application of energy model of model of turbulence to calculation of lubricant flows[J].ASME,Journal of lubrication technology,1974,96(1):95. [12]张运清,张直明.一种紊流润滑理论分析新方法──复合型紊流模式理论[J].摩擦学学报,1995(3):271-275. ZHANG Yun-qing,ZHANG Zhi-ming.A new of theoretical analysis of turbulent lubrication using a combined model of turbulence[J].Tribology,1995(3):271-275. [13]王小静,张直明,孙美丽.复合型紊流润滑理论模式的研究[J].摩擦学学报,2000(2):127-130. WANG Xiao-jing,ZHANG Zhi-ming,SUN Mei-li.A combined theory for turbulence in lubricating films[J].Tribology,2000(2):127-130. [14]Cabrera D L,Woolley N H,Allanson D R,et al.Film pressure distribution in water-lubricated rubber journal bearings[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2005,219(2):125-132. [15]Frêne J,Arghir M,Constantinescu V.Combined thin-film and navier stokes analysis in high reynolds number lubrication[J].Tribology International,2006,39(8):734-747. [16]Shenoy B S,Pai R.Stability characteristics of an externally adjustable fluid film bearing in the laminar and turbulent regimes[J].Tribology International,2010,43(9):1751-1759. [17]Shyu S H,Jeng Y R,Chang C C.Load capacity for adiabatic infinitely wide plane slider bearings in the turbulent thermohydrodynamic regime[J].Tribology Transactions,2004,47(3):396-401. [18]王迎佳,刘敏珊,岑少起,等.层流紊流共存时径向滑动轴承热流体润滑性能分析[J].郑州大学学报(工学版),2013,34(5):43-47. WANG Ying-jia,LIU Min-shan,CEN Shao-qi,et al.Analysis of lubrication performance of hot fluid of journal bearing under the coexistence state of fluid with laminar flow and turbulence[J].Joumal of Zhengzhou University(Engineering Science),2013,34(5):43-47. [19]Mallya R,Shenoy S B,Pai R.Static characteristics of misaligned multiple axial groove water-lubricated bearing in the turbulent regime[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2017,231(3):385-398. [20]Das S,Guha S K.Non-linear stability analysis of micropolar fluid lubricated journal bearings with turbulent effect[J].Industrial Lubrication and Tribology,2019,71(1):31-39. [21]Litwin W.Properties comparison of rubber and three layer PTFE-NBR-bronze water lubricated bearings with lubricating grooves along entire bush circumference based on experimental tests[J].Tribology International,2015,90:404-411. [22]Litwin W,Dymarski C.Experimental research on water-lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear[J].Tribology International,2016,95:449-455. [23]Gao G,Yin Z,Jiang D,et al.Numerical analysis of plain journal bearing under hydrodynamic lubrication by water[J].Tribology International,2014,75:31-38. [24]Lv F,Rao Z,Ta N,et al.Mixed-lubrication analysis of thin polymer film overplayed metallic marine stern bearing considering wall slip and journal misalignment[J].Tribology International,2017,109:390-397. [25]Ouyang W,Zhang X,Jin Y,et al.Experimental study on the dynamic performance of water-lubricated rubber bearings with local contact[J].Shock and Vibration,2018:1-10. [26]刘佳蕾.水润滑橡胶轴承热弹流润滑特性的研究[D].西安:西安科技大学,2017. LIU Jia-lei.Study on thermal elastohydrodynamic lubrication characteristics of water lubricated rubber bearings[D].Xi'an:Xi'an University of Science and Technology,2017. [27]葛景信.湍流与润滑[M].上海:上海科技出版社,1983. [28]徐芝纶.弹性力学[M].北京:高等教育出版社,2015.

备注/Memo

备注/Memo:
收稿日期:2019-07-11 责任编辑:高 佳
基金项目:国家自然科学基金(11972282); 陕西省自然科学基金(2014JM1015).
通信作者:李 明(1963-),男,江苏苏州人,教授,博士生导师, E-mail:Limingnuaa@hotmail.com
更新日期/Last Update: 2020-03-30