[1]李 琛,Udo Rmer,Alison Lennon.优化n型接触极钝化多晶硅太阳能电池的硼扩散工艺[J].西安科技大学学报,2020,(02):298-303.
 LI Chen,Udo Rmer,Alison Lennon.Optimization of boron diffusion in n-type polysilicon passivated contact solar cells[J].Journal of Xi'an University of Science and Technology,2020,(02):298-303.
点击复制

优化n型接触极钝化多晶硅太阳能电池的硼扩散工艺(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2020年02期
页码:
298-303
栏目:
出版日期:
2020-03-30

文章信息/Info

Title:
Optimization of boron diffusion in n-type polysilicon passivated contact solar cells
文章编号:
1672-9315(2020)02-0298-06
作者:
李 琛Udo RömerAlison Lennon
(新南威尔士大学,澳大利亚 悉尼 2052)
Author(s):
LI ChenUdo RömerAlison Lennon
(The University of New South Wales,Sydney 2052,Australia)
关键词:
硼扩散温度 氧化时间 EDNA 2 Quokka 光电转化效率
Keywords:
boron diffusion temperature oxidation time EDNA2 Quokka solar cell efficiency
分类号:
TB 321
文献标志码:
A
摘要:
光伏产业对高效率和低成本太阳能电池的需求促进了太阳能电池制造工艺的不断优化。在制造过程中,控制硅晶片尺寸和硅中杂质浓度的需求变得越来越重要。目前,太阳能电池的标准化生产线包括采用柴可拉斯基工艺制作硅锭,将硅锭切块,晶圆切片,纹理化,发射极扩散,边缘隔离,抗反射涂层,丝网印刷,退火以及最终测试。该生产线的每个步骤都可以分别进行优化,以提高太阳能电池的效率。文中主要研究n型接触极钝化多晶硅太阳能电池的硼扩散过程,研究扩散曲线对太阳能电池效率的影响。首先,使用EDNA2进行仿真模拟以确定重掺杂区的参数,进而使用Quokka软件进行进一步模拟,从而获得光伏参数开路电压(VOC)和填充因数(FF),并确定最佳扩散温度和时间,为后续的实验节省大量时间并提供指导方案。通过对扩散温度和氧化时间的分析,优化扩散过程中的相关参数,提高太阳能电池的性能。最终将实验结果与模拟结果相对应,判断工艺优化是否有效,符合预期结果。
Abstract:
The demand for the higher-efficiency and lower-cost solar cells in PV industry promotes the optimisation of the manufacturing process of solar cells continuously.The need for controlling the silicon wafer size and the concentration of impurities in the silicon is increasingly important in manufacturing processes.Currently,the standardised manufacturing line of solar cells includes growing silicon ingot with Czochralski(CZ)process,sawing the silicon ingot into bricks,wafer slicing,texturing,emitter diffusion,edge isolation,anti-reflection coating,screen printing,co-firing and testing at the end.Each step in this production line can be optimised separately to improve the efficiency of solar cells.This thesis focuses on the boron diffusion process in n-type doped polysilicon passivated contact solar cells to investigate the impact of diffusion profile on solar cells'efficiency,with four objectives addressed.First,perform simulations of EDNA2 to determine the recombination in the heavily doped region and Quokka to obtain the photovoltaic parameters open-circuit voltage(VOC)and Fill factore(FF),respectively.Reproducing previous simulations can significantly reduce the experimental time and provide a guideline for optimising boron diffusion.Second,identify the effects of drive-in temperature in the boron diffusion process,followed by the impact of post-diffusion oxidation time,which attempts tooptimise relevant parameters during the diffusion process,thereby improving solar cells'performance.What has been done previously is possible to comparethe emitter recombination results with the calculation values,an important step to check if the optimisation of the diffusion process effective.

参考文献/References:

[1] Fara L.Advanced solar cell materials,technology,modeling,and simulation[J].2013. [2]Markvart T,Castafier L.Solar Cells:Materials,Manufacture and Operation[D].2005. [3]Cuevas A.The early history of bifacial solar cells[R].20th European Photovoltaic Solar Energy Conference,2005. [4]Cousins P J,Smith D D,Luan H C,et al.Generation 3:Improved performance at lower cost[C]//2010 35th IEEE Photovoltaic Specialists Conference.IEEE,2010:275-278. [5]Mclntosh K R,Altermatt P P.A freeware 1D emitter model for silicon solar cells[C]//2010 35th IEEE Photovoltaic Specialists Conference.IEEE,2010:2188-2193. [6]Quokka 2 Manual[OL].Available:https://www2.pvlighthouse.com.au/resources/quokka2/QM2/Quokka manual.htm.[Accessed:09-Jun-2019]. [7]Sheet resistance calculator[OL].Available:https://www2.pvlighthouse.com.au/calculators/sheet resistance calculator/sheet resistance calculator.aspx.[Accessed:07-Jun-2019]. [8]Surface Recombination|PVEducation[OL].Available:https://www.pveducation.org/pvcdrom/pn-junctions/surface-recombination.[Accessed:30-May-2019]. [9]Richter A,Glunz S W,Werner F,et al.Improved quantitative description of Auger recombination in crystalline silicon[J].Physical Review B,2012,86(16):165-202. [10]Yang L,Yang J,Fang X,et al.Boron diffusion of the silicon solar cell with BBr3[C]//Proceedings of ISES World Congress 2007(Vol.Ⅰ-Vol.Ⅴ).Springer,Berlin,Heidelberg,2008:1148-1151. [11]Nguyen H T,Baker-Finch S C,Macdonald D.Temperature dependence of the radiative recombination coefficient in crystalline silicon from spectral photoluminescence[J].Applied Physics Letters,2014,104(11):105-112. [12]Auger P.Sur les rayons β secondaires produits dans un gaz par des rayons X[J].CR Acad.Sci.(F),1923:169-177. [13]Surface Recombination[OL].Available:https://www.pveducation.org/pvcdrom/design-of-silicon-cells/surface-recombination#footnote1_dqnzyhz.[Accessed:25-May-2019]. [14]FAQs-Sinton Instruments[OL].Available:https://www.sintoninstruments.com/faqs/.[Accessed:13-Jun-2019]. [15]Kern W.The evolution of silicon wafer cleaning technology[J].Journal of the Electrochemical Society,1990,137(6):1887-1892. [16]Explain liquid source and gaseous source diffusion system[OL].Available:http://www.ques10.com/p/32541/explain-liquid-source-and-gaseous-source-diffusion/.[Accessed:13-Jun-2019]. [17]Shih Y C,Shao Y,Shi F G.Novel ceramic additives for screen-printable silicon solar cell metallization[J].Journal of Electronic Materials,2016,45(8):3999-4004. [18]Fair R B.Diffusion in silicon[M].Pergamon:Concise Encyclopedia of Semiconducting Materials & Related Technologies,1992. [19]Ting C Y,Crowder B L.Electrical properties of Al/Ti contact metallurgy for VLSI application[J].Journal of The Electrochemical Society,1982,129(11):2590-2594. [20]Eades W D,Swanson R M.Calculation of surface generation and recombination velocities at the Si-SiO2 interface[J].Journal of applied Physics,1985,58(11):4267-4276. [21]Watkins G.Effets des rayonnements sur les semiconducteurs[J].Proc.7th Int.Conf.Phys.Semicond.Paris-Royaumont,1964:97-111. [22]Fair R B.Oxidation,impurity diffusion,and defect growth in silicon-An overview[J].Journal of the Electrochemical Society,1981,128(6):1360-1368. [23]Massimo Rudan.Physics of semiconductor devices[M].Springer New York,2015. [24]Cuevas A,Yan D.Misconceptions and misnomers in solar cells[J].IEEE Journal of Photovoltaics,2013,3(2):916-923.

备注/Memo

备注/Memo:
收稿日期:2019-10-22 责任编辑:杨忠民
通信作者:李 琛(1993-),男,陕西西安人,硕士研究生,E-mail:lichen-richard@qq.com
更新日期/Last Update: 2020-03-30