[1]杨文化,来兴平,王宁波,等.急倾斜水平分段综放面强矿压致灾机理及其防治[J].西安科技大学学报,2020,(02):221-228.
 YANG Wen-hua,LAI Xing-ping,WANG Ning-bo,et al.Disaster mechanism and prevention of strong rock pressure in steeply inclined horizontal sublevel fully-mechanized caving face[J].Journal of Xi'an University of Science and Technology,2020,(02):221-228.
点击复制

急倾斜水平分段综放面强矿压致灾机理及其防治(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2020年02期
页码:
221-228
栏目:
出版日期:
2020-03-30

文章信息/Info

Title:
Disaster mechanism and prevention of strong rock pressure in steeply inclined horizontal sublevel fully-mechanized caving face
文章编号:
1672-9315(2020)02-0221-08
作者:
杨文化12来兴平123王宁波4艾小斐3
(1.西安科技大学 能源学院,陕西 西安 710054; 2.西安科技大学 西部矿井开采及灾害防治教育部重点实验室,陕西 西安 710054; 3.西安科技大学 榆林研究院,陕西 榆林 719000; 4.国家能源集团新疆能源公司,新疆 乌鲁木齐 830027)
Author(s):
YANG Wen-hua12LAI Xing-ping123WANG Ning-bo4AI Xiao-fei3
(1.College of Energy Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 2.Key Laboratory of Western Mine Exploitation and Hazard Prevention,Ministry of Education,Xi'an University of Science and Technology,Xi'an 710054,China; 3.Xi'an University of Science and Technology-Yulin Research Institute,Yu'lin 719000,China; 4.National Energy Group Xinjiang Energy Company,Urumchi 830027,China)
关键词:
矿业工程 急倾斜 强矿压 致灾机理 超前预裂爆破
Keywords:
mining engineering steeply inclined coal seam strong pressure disaster-causing mechanism pre-blasting
分类号:
TD 323
文献标志码:
A
摘要:
急倾斜特厚煤层水平分段综放开采条件下的强矿压致灾日益突出,严重制约矿井的安全生产。以乌东煤矿北采区45#特厚煤层为研究背景,构建物理相似模型,揭示了采场覆岩垮冒结构特征,理论分析综放面覆岩应力传递特征; 通过FLAC3D软件建立三维数值计算模型,分析了急倾斜特厚煤层水平分段综放开采后覆岩的应力场及塑性区的变化特征。结果表明:急斜煤层赋存环境复杂,顶板不易垮落,易在采空区形成悬空顶板; +600水平分段煤层开采后,覆岩应力重新分布,在+575水平工作面沿煤层倾向距顶板巷6~45 m的采场煤岩体内,形成轮廓为“三角形”的应力集中区; 随开采水平不断向深部延伸,应力集中程度不断增加,矿压显现也随之增剧。针对覆岩垮冒结构及应力特征,进行超前预裂爆破弱化技术,综放工作面支架压力和电磁辐射监测表明:支架压力下降了5~10 MPa,煤岩体平均电磁辐射强度由35.5 mV下降为14.4 mV,明显减缓了工作面强矿压显现,实现了安全生产。这对类似矿井安全开采提供了值得借鉴依据。
Abstract:
The disaster caused by strong pressurein fully-mechanized horizontal sublevel caving mining in steeply inclined and extra-thick coal seam,is increasingly prominent,which seriously restricts the safety of the mine production.Taking 45# Extra-thick Coal Seam in northern mining area of Wudong Coal Mine as the research background,the physical model is constructed,the structural characteristics of overburden caving are revealed,and the stress-transfer characteristics of fully-mechanized top-coal caving face are theoretically analyzed.A three-dimensional numerical model is established using FLAC3D,and the stress field and variation characteristics of the plastic zone of the overburden rock after the caving of the horizontal sublevel are examined.The results show that the existing environment of steep seam is very complicated,and it is not easy for the roof to collapse.Therefore,it is likely to form a hanging roof in the goaf.After the excavation of the seam in 600 m level,the overburden stress redistributed,along the inclination of 575 m level face from the roof roadway 6 m to 45 m of the slope coal and rock mass,forming a “triangular” stress concentration area; as the mining level continues to extend to the depth,the concentration area continues to increase,and the rock pressure also increases.Based on the structure and stress characteristics of overburden,the advanced pre-splitting blasting technology is utilized.The support pressure and electromagnetic radiation monitoring result indicate that the support pressure decreased by 5~10 MPa,and the average electromagnetic radiation intensity of the coal and rock decreases from 35.5 to 14.4 mV,an alleviation of the rock pressure in the working face and an indication of safe production there.This provides a reference forthe safe mining of others.

参考文献/References:

[1] LAI Xing-ping,CAI Mei-feng,REN Fen-hua.Study on dynamic disaster in steeply deep mass condition in Urumchi Coalfield[J].Shock and Vibration,2015. [2]来兴平,杨毅然,单鹏飞,等.急斜煤层顶板应力叠加效应致灾特征综合分析[J].煤炭学报,2018,43(1):70-78. LAI Xing-ping,YANG Yi-ran,SHAN Peng-fei,et al.Comprehensive analysis of disaster-causing characteri-stics of roof stress superimposed effect in steeply inclined coal seam[J].Journal of China Coal Society,2018,43(1):70-78. [3]杨毅然,来兴平,单鹏飞.急倾斜特厚煤层顶板非对称平顶型拱结构对比分析[J].西安科技大学学报,2017,37(4):485-491. YANG Yi-ran,LAI Xing-ping,SHAN Peng-fei.Const-rastive analysis of the asymmetrical flat-topped arch structure in steeply inclined thick coal seams[J].Journal of Xi'an University of Science and Technology,2017,37(4):485-491. [4]邵小平,石平五,贺桂成.急斜放顶煤开采顶板卸载拱结构分析[J].北京科技大学学报,2007,29(5):447-451. SHAO Xiao-ping,SHI Ping-wu,HE Gui-cheng.Analysis of roof unloading arch structure in steep caving mining[J].Journal of Beijing University of Science and Technology,2007,29(5):447-451. [5]王家臣,杨胜利,李良晖.急倾斜煤层水平分段综放顶板“倾倒-滑塌”破坏模式[J].中国矿业大学学报,2018,47(6):1175-1184. WANG Jia-chen,YANG Sheng-li,LI Liang-hui.Toppling-slumping failure mode in horizontal sublevel top-coal caving face in steeply-inclined seam[J].Journal of China University of Mining and Technology,2018,47(6):1175-1184. [6]鞠文君,李文洲.急倾斜特厚煤层水平分段开采老顶断裂力学模型[J].煤炭学报,2008,33(6):606-608. JU Wen-jun,LI Wen-zhou.Fracture mechanical model of main roof along inclined for fully-mechanized top-coal caving in steep and extra-thick coal seam[J].Journal of China Coal Society,2008,33(6):606-608. [7]崔 峰,来兴平,曹建涛,等.急倾斜煤层水平分段综放面开采扰动影响分析[J].采矿与安全工程学报,2015,32(4):610-616. CUI Feng,LAI Xing-ping,CAO Jian-tao,et al.Mining disturbance of horizontal section full-mechanized caving face in steeply inclined coal seam[J].Journal of Mining and Safety Engineering,2015,32(4):610-616. [8]陈建强,来兴平,崔 峰.急倾斜特厚煤层耦合致裂与破碎工艺研发及应用[J].西安科技大学学报,2015,35(2):139-143. CHEN Jian-qiang,LAI Xing-ping,CUI Feng.Research and application of the coupled crack and crush technology for steeply dipping extra-thick coal seam[J].Journal of Xi'an University of Science and Technology,2015,35(2):139-143. [9]齐庆新,雷 毅,李宏艳,等.深孔断顶爆破防治冲击地压的理论与实践[J].岩石力学与工程学报,2007,26(S1):3522-3527. QI Qing-xin,LEI Yi,LI Hong-yan,et al.Theory and application of prevention of rock burst by break-tip blast in deep hole[J].Journal of Rock Mechanics and Engineering,2007,26(S1):3522-3527. [10]窦林名,姜耀东,曹安业,等.煤矿冲击矿压动静载的“应力场-震动波场”监测预警技术[J].岩石力学与工程学报,2017,36(4):803-811. DOU Lin-ming,JIANG Yao-dong,CAO Anye,et al.Monitoring and pre-warning of rockburst hazard with technology of stress field and wave field in underground coalmines[J].Journal of Rock Mechanics and Engineering,2017,36(4):803-811. [11]何学秋,聂百胜,王恩元,等.矿井煤岩动力灾害电磁辐射预警技术[J].煤炭学报,2007,32(1):56-59. HE Xue-qiu,NIE Bai-sheng,WANG En-yuan,et al.Electromagnetic emission forecasting technology of coal or rock dynamic disasters in mine[J].Journal of China Coal Society,2007,32(1):56-59. [12]曹建涛,来兴平,崔 峰,等.复杂煤岩体结构动力失稳多参量预报方法研究[J].西安科技大学报,2016,36(3):301-307. CAO Jian-tao,LAI Xing-ping,CUI Feng,et al.Multi-parameter forecasting method of dynamic destabilization of complex coal and rock mass structure[J].Journal of Xi'an University of Science and Technology,2016,36(3):301-307. [13]曹建涛,来兴平,崔 峰.急斜特厚煤层开采扰动区(MDZ)煤岩体动力学变形失稳过程分析[J].西安科技大学学报,2015,35(4):397-402. CAO Jian-tao,LAI Xing-ping,CUI Feng.Characteristics on dynamical deformation and instability of coal and rock mass in Mining Disturbed Zone(MDZ)of steeply dipping heavy thick coal seams mining[J].Journal of Xi'an University of Science and Technology,2015,35(4):397-402. [14]Shan P F,Lai X P.Numerical simulation of the fluid-solid coupling process during the failure of a fractured coal-rock mass based on the regional geostress characteristics[J].Transport in Porous Media,2018,124(3):1061-1079. [15]SHAN Peng-fei,LAI Xing-ping.Influence of CT scanning parameters on rock and soil images[J].Journal of Visual Communication and Image Represeentation,2019,58(2019):642-650. [16]SHAN Peng-fei,LAI Xing-ping.Mesoscopic structure PFC~2D model of soil rock mixture based on digital image[J].Journal of Visual Communication and Image Representation,2019,58(2019):407-415. [17]Lai X P,Shan P F,Cao J T,et al.Simulation of asymmetric destabilization of minevoid rock masses using a large 3D physical model[J].Rock Mechanics and Rock Engineering,2016,49(2):487-502. [18]Lai X P,Shan P F,Cai M F,et al.Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling[J].International Journal of Minerals,Metallurgy and Materials,2015,22(1):1-11. [19]崔 峰,杨彦斌,来兴平,等.基于微震监测关键层破断诱发冲击地压的物理相似材料模拟实验研究[J/OL].岩石力学与工程学报,2018:1423. CUI Feng,YANG Yan-bin,LAI Xing-ping,et al.Experimental study on the simulation of physical similar materials based on microseismic monitoring of key stratum breaking induced rock burst[J/OL].Journal of Rock Mechanics and Engineering,2018:1423. [20]柴 敬,汪志力,李 毅,等.物理模型试验方法的应用分析Ⅱ[J].西安科技大学学报,2014,34(2):123-128. CHAI Jing,WANG Zhi-li,LI Yi,et al.Application analysis of physical model simulation method Ⅱ[J].Journal of Xi'an University of Science and Technology,2014,34(2):123-128. [21]唐巨鹏,潘一山.ANSYS在煤矿开采数值模拟中应用研究[J].岩土力学,2004,25(S2):329-332,342. TANG Ju-peng,PAN Yi-shan.Application of ANSYS software to numerical simulation of coal mining[J].Rock and Soil Mechanics,2004,25(S2):329-332,342. [22]蓝 航,姚建国,张华兴,等.基于FLAC3D的节理岩体采动损伤本构模型的开发及应用[J].岩石力学与工程学报,2008,27(3):572-579. LAN Hang,YAO Jian-guo,ZHANG Hua-xing,et al.Development and application of constitutive model of jointed rock mass damage due to mining based on FLAC3D[J].Journal of Rock Mechanics and Engineering,2008,27(3):572-579. [23]王永秀,毛德兵,齐庆新.数值模拟中煤岩层物理力学参数确定的研究[J].煤炭学报,2003,28(6):593-597. WANG Yong-xiu,MAO De-bing,QI Qing-xin.Study on determination of physical and mechanical parameters of coal seam in numerical simulation[J].Journal of China Coal Society,2003,28(6):593-597. [24]朱万成,唐春安,杨天鸿,等.岩石破裂过程分析用(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24-29. ZHU Wan-cheng,TANG Chun-an,YANG Tian-hong,et al.Constitutive relationship of microscopic elements used in RFPA2D and its validations[J].Journal of Rock Mechanics and Engineering,2003,22(1):24-29. [25]唐春安,徐曾和,徐小荷.岩石破裂过程分析RFPA2D系统在采场上覆岩层移动规律研究中的应用[J].辽宁工程技术大学学报(自然科学版版),1999,18(5):456-458. TANG Chun-an,XU Zeng-he,XU Xiao-he.Application of RFPA2D system for rock fracture process analysis in the study of overburden strata movement law in stope[J].Journal of Liaoning University of Engineering and Technology(Natural Science Edition),1999,18(5):456-458.

相似文献/References:

[1]张 杰,杨 涛,索永录,等.基于耦合评价的安山煤矿顶板突水预测模型研究[J].西安科技大学学报,2018,(04):569.[doi:10.13800/j.cnki.xakjdxxb.2018.0408 ]
 ZHANG Jie,YANG Tao,SUO Yong-lu,et al.Forecast model for roof water inrush in Anshan coal mine based on coupling evaluation[J].Journal of Xi'an University of Science and Technology,2018,(02):569.[doi:10.13800/j.cnki.xakjdxxb.2018.0408 ]
[2]李谦益.改进可拓层次法在煤层顶板稳定性评价中的应用[J].西安科技大学学报,2018,(04):643.[doi:10.13800/j.cnki.xakjdxxb.2018.0418 ]
 LI Qian-yi.Application of EAHP in stability evaluation of coal seam roof[J].Journal of Xi'an University of Science and Technology,2018,(02):643.[doi:10.13800/j.cnki.xakjdxxb.2018.0418 ]
[3]郭爱华.煤层气井潜在酸联合加砂压裂增产机理及应用[J].西安科技大学学报,2018,(04):650.[doi:10.13800/j.cnki.xakjdxxb.2018.0419 ]
 GUO Ai-hua.Mechanism and application of potential acid combined sand and fracturing in CBM wells[J].Journal of Xi'an University of Science and Technology,2018,(02):650.[doi:10.13800/j.cnki.xakjdxxb.2018.0419 ]
[4]王亚超,袁 泉,肖 旸,等.水分对白皎无烟煤氧化过程放热特性的影响[J].西安科技大学学报,2018,(05):721.[doi:10.13800/j.cnki.xakjdxxb.2018.0505]
 WANG Ya-chao,YUAN Quan,XIAO Yang,et al.Effect of moisture on exothermic characteristics of oxidation process of Baijiao anthracite[J].Journal of Xi'an University of Science and Technology,2018,(02):721.[doi:10.13800/j.cnki.xakjdxxb.2018.0505]
[5]柴 敬,杜文刚,袁 强,等.物理模型试验光纤传感技术测试方法分析[J].西安科技大学学报,2018,(05):728.[doi:10.13800/j.cnki.xakjdxxb.2018.0506]
 CHAI Jing,DU Wen-gang,YUAN Qiang,et al.Analysis of test method for physical model test based on optical fiber sensing technology detection[J].Journal of Xi'an University of Science and Technology,2018,(02):728.[doi:10.13800/j.cnki.xakjdxxb.2018.0506]
[6]刘志军,杨 栋,胡耀青,等.油页岩原位热解孔隙结构演化的低温氮吸附分析[J].西安科技大学学报,2018,(05):737.[doi:10.13800/j.cnki.xakjdxxb.2018.0507]
 LIU Zhi-jun,YANG Dong,HU Yao-qing,et al.Low temperature nitrogen adsorption analysis of pore structure evolution in in-situ pyrolysis of oil shale[J].Journal of Xi'an University of Science and Technology,2018,(02):737.[doi:10.13800/j.cnki.xakjdxxb.2018.0507]
[7]郭 军,刘 荫,金永飞,等.矿井胶带火灾巷道环境多参数时空演化规律[J].西安科技大学学报,2019,(01):21.[doi:10.13800/j.cnki.xakjdxxb.2019.0104 ]
 GUO Jun,LIU Yin,JIN Yong-fei,et al.Spatiotemporal evolution law of multiple parameters of roadway environment for rubber-belt fire in mine[J].Journal of Xi'an University of Science and Technology,2019,(02):21.[doi:10.13800/j.cnki.xakjdxxb.2019.0104 ]
[8]余学义,毛旭魏.近距离煤层重复采动对坡体稳定性的影响[J].西安科技大学学报,2019,(01):34.[doi:10.13800/j.cnki.xakjdxxb.2019.0106 ]
 YU Xue-yi,MAO Xu-wei.Influence of repeated mining of close distance coal seams on slope stability[J].Journal of Xi'an University of Science and Technology,2019,(02):34.[doi:10.13800/j.cnki.xakjdxxb.2019.0106 ]
[9]于 伟,李 振,刘莉君,等.煤泥浮选复合药剂开发及分选提质[J].西安科技大学学报,2019,(01):138.[doi:10.13800/j.cnki.xakjdxxb.2019.0120 ]
 YU Wei,LI Zhen,LIU Li-jun,et al.Development of compound reagent for coal slime flotation[J].Journal of Xi'an University of Science and Technology,2019,(02):138.[doi:10.13800/j.cnki.xakjdxxb.2019.0120 ]
[10]邓广哲,郑 锐,徐 东.大采高综采端头悬顶水力切顶控制机理[J].西安科技大学学报,2019,(02):224.[doi:10.13800/j.cnki.xakjdxxb.2019.0207 ]
 DENG Guang-zhe,ZHENG Rui,XU Dong.Control mechanism of hydraulic roof cutting for end suspended roof of fully-mechanized mining face with large mining height[J].Journal of Xi'an University of Science and Technology,2019,(02):224.[doi:10.13800/j.cnki.xakjdxxb.2019.0207 ]

备注/Memo

备注/Memo:
收稿日期:2019-06-19 责任编辑:刘 洁
基金项目:国家重点基础研究计划(973计划)项目(2015CB251600); 国家自然科学基金(515041484)
通信作者:来兴平(1971-),男,宁夏平罗人,教授,博士生导师,E-mail:553712831@qq.com
更新日期/Last Update: 2020-03-30