LI Kang-le,SHAO Xiao-qiang,PAN Hong-guang,et al.Downhole positioning NLOS delay suppressionmethod based on adaptive robust Kalman filter[J].Journal of Xi'an University of Science and Technology,2020,(01):173-180.





Downhole positioning NLOS delay suppressionmethod based on adaptive robust Kalman filter
(西安科技大学 电气与控制工程学院,陕西 西安 710054)
LI Kang-leSHAO Xiao-qiangPAN Hong-guangGUO De-fengZHANG Run-yangWEI Jin-yang
(College of Electric and Control Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)
矿井定位 NLOS 自适应抗差卡尔曼滤波 参数拟合 TOA
mine positioning NLOS adaptive robust Kalman filter parameter fitting TOA
TD 76
针对矿井巷道NLOS(Non Line Of Sight)时延影响矿井TOA(Time Of Arrival)定位精度的问题,通过分析巷道NLOS时延形成方式,将巷道NLOS时延分为随机和固定两类,结合两类巷道NLSO时延的特性,提出了一种基于自适应抗差卡尔曼滤波的巷道NLOS时延抑制方法。对于巷道随机NLOS时延,通过在经典卡尔曼滤波算法的基础上引入了自适应抗差概念,使系统在线性滤波的基础上增加了对随机脉冲误差的抑制能力; 对于巷道固定NLOS时延,通过在巷道NLOS误差模型的基础上,构建巷道中信号传播距离与传播环境间的函数模型,并结合几何定位算法完成系统对固有误差的有效抑制。实验结果显示,包含有巷道NLOS时延的原始定位数据,误差在2.1~8.1 m之间,平均误差为3.7 m; 原始数据经自适应抗差卡尔曼滤波算法处理后,误差在1.9~3.6 m之间,平均误差为2.5 m,定位曲线与实际移动曲线基本保持平行; 再经参数拟合和几何算法处理,误差在0~1.0 m之间波动,误差平均值为0.27 m,且所提方法较原始定位数据,平均定位误差减小了3.43 m.从而表明,所提方法对巷道NLOS时延具有较明显的抑制作用,能够提高TOA井下人员定位系统的精确度。
To solve the problem that the positioning accuracy of time of arrival(TOA)positioning method is susceptible to delay of the non line of sight(NLOS),and based on the analysis of the formation mode of mine roadway,the NLOS delay of the roadway was divided into random NLOS delay and fixed NLOS delay.Taking the characteristics of two kinds of NLOS delays into consideration,a method of mine TOA positioning based on improved Kalman filter and parameter fitting is proposed.In order to eliminate the random NLOS delay error in roadway,the concept of adaptively robust was introduced to the basis of the classical Kalman filter algorithm.On the basis of linear filtering,the system can suppress random impulse error.Meanwhile,in order to suppress the fixed NLOS delay error,the roadway range finding error model was proposed,in which the functional relationship between signal propagation distance and propagation environment was established.Thus,the inherent error can be reduced by using the geometric positioning algorithm.The simulation results indicate that the original positioning data containing the NLOS delay of the roadway has an error between 2.1 and 8.1 m and an average error of 3.7 m.After the measurement data was processed by the Kalman filter based on the threshold of innovation,the positioning error is kept between 1.9 and 3.1 m and an average error of 2.5 m,and the positioning curve is basically parallel to the actual movement curve.After being processed by the parameter fitting and geometric algorithm,the positioning error is between 0 and 1.0 m,and the average error is 0.27 m.By comparison with the original positioning data,the average positioning error of the proposed method is reduced by 3.43 m.It can be found that the proposed method has a prominent inhibitory effect on the NLOS delay,and has a great effect on improving the accuracy of TOA downhole crew positioning system.


[1] 申 雪,刘 驰,孔 宁,等.智慧矿山物联网技术发展现状研究[J].中国矿业,2018,27(7):120-125,143. SHEN Xue,LIU Chi,KONG Ning,et al.Research on the technical development status of the intelligent mine base on internet of things[J].China Mining Magazine,2018,27(7):120-125,143. [2]霍振龙.矿井定位技术现状和发展趋势[J].工矿自动化,2018,44(2):51-55. HUO Zhen-long.Status and development trend of mine positioning technology[J].Industry and Mine Automation,2018,44(2):51-55. [3]胡青松,张 申,吴立新,等.矿井动目标定位:挑战、现状与趋势[J].煤炭学报,2016,41(05):1059-1068. HU Qing-song,ZHANG Shen,WU Li-xin,et al.Localization techniques of mobile objects in coal mines:challenges,solutions and trends[J].Journal of China Coal Society,2016,41(5):1059-1068. [4]刘世森.基于AOA的矿井人员精确定位技术[J].煤矿安全,2019,50(7):140-142,146. LIU Shi-sen.Accurate positioning technology for mine workers based on AOA[J].Safety in Coal Mine,2019,50(7):140-142,146. [5]孙哲星,孙继平.异步测时矿井人员精确定位方法[J].煤炭学报,2018,43(5):1464-1470. SUN Zhe-xing,SUN Ji-ping.Underground coal mine accurate personnel positioning method based on asynchronous time-measuring[J].Journal of China Coal Society,2018,43(5):1464-1470. [6]Khan U H,Rasheed H,Aslam B,et al.Localization of compact circularly polarized RFID tag using TOA technique[J].Radio engineering,2017,26(1):147-153. [7]Shao Xiao-qiang,Li Kang-le,Chen Xi.A method of TOA positioning for mine to effectively reduce the impact of Non-Line of sight error propagation[C]//Proceedings of the 30th Chinese Control and Decision Conference,CCDC 2018.Shenyang:Institute of Electrical and Electronics Engineers Inc.,2018:4650-4655. [8]ZHANG Rui,XIA Wei-wei,YAN Feng,et al.A single-site positioning method based on TOA and DOA estimation using virtual stations in NLOS environment[J].China Communications,2019,16(2):146-159. [9]孙继平,李晨鑫.基于WiFi和计时误差抑制的TOA煤矿井下目标定位方法[J].煤炭学报,2014,39(1):192-197. SUN Ji-ping,LI Chen-xin.TOA underground coal mine target positioning method based on WiFi and timing error suppression[J].Journal of China Coal Society,2014,39(1):192-197. [10]刘真真,田子建,王文清,等.基于TOA压缩感知的矿井分布式目标定位方法[J].煤炭科学技术,2018,46(9):188-195. LIU Zhen-zhen,TIAN Zi-jian,WANG Wen-qing,et al.Mine distributed target location method based on TOA compressed sensing[J].Coal Science and Technology,2018,46(9):188-195. [11]孙继平,李晨鑫.基于改进均值滤波和参数拟合的矿井TOA几何定位方法[J].煤炭学报,2015,40(5):1206-1212. SUN Ji-ping,LI Chen-xin.Mine TOA geometric positioning method based on improved mean filtering and parameter fitting[J].Journal of China Coal Society,2015,40(5):1206-1212. [12]孙继平,李晨鑫.基于卡尔曼滤波和指纹定位的矿井TOA定位方法[J].中国矿业大学学报,2014,43(6):1127-1133. SUN Ji-ping,LI Chen-xin.Mine time of arrival positioning method based on Kalman filtering and fingerprint positioning[J].Journal of China University of Mining & Technology,2014,43(6):1127-1133. [13]Korrai P K,Rao K D.Performance analysis of downlink mmWave networks under LOS/NLOS propagation with blockage and directional beamforming[J].Telecommunication Systems,2019,72(1):53-68. [14]李旭虹,张同丽,张育芝.矿井NLOS环境下改进UKF超宽带定位算法[J].西安科技大学学报,2018,38(5):824-829. LI Xu-hong,ZHANG Tong-li,ZHANG Yu-zhi.Research on improved UKF UWB localization algorithm in mine NLOS environment[J].Journal of Xi'an University of Science and Technology,2018,38(5):824-829. [15]CHENG Long,WANG Yan,SUN Xing-ming,et al.A mobile localization strategy for wireless sensor network in NLOS conditions[J].China Communications,2016,13(10):69-78. [16]SU Zheng-qiang,SHAO Gen-fu,LIU Hua-ping.Semidefinite programming for NLOS error mitigation in TDOA localization[J].IEEE Communications Letters,2017,21(09):15-34. [17]曾 玲,彭 程,刘 恒.基于非视距鉴别的超宽带室内定位算法[J].计算机应用,2018,38(S1):131-134,139. ZENG Ling,PENG Cheng,LIU Heng.UWB indoor positioning algorithm based on NLOS identification[J].Journal of Computer Applications,2018,38(S1):131-134,139. [18]黄越洋,张嗣瀛,井元伟,等.基于TDOA和RSS的可行域粒子滤波非视距定位算法[J].控制与决策,2017,32(8):1415-1420. HUANG Yue-yang,ZHANG Si-ying,JING Yuan-wei,et al.Non-line of sight localization algorithm based on TDOA and RSS by feasible region particle filter[J].Control and Decision,2017,32(8):1415-1420. [19]鲍小雨,王 庆,阳 媛,等.一种抑制NLOS误差的UWB定位方法[J].传感器与微系统,2019,38(9):9-12. BAO Xiao-yu,WANG Qing,YANG Yuan,et al.A UWB positioning method for suppressing NLOS error[J].Transducer and Microsystem Technologies,2019,38(9):9-12. [20]周 瑞,袁兴中,黄一鸣.基于卡尔曼滤波的WiFi-PDR融合室内定位[J].电子科技大学学报,2016,45(3):399-404. ZHOU Rui,YUAN Xing-zhong,HUANG Yi-ming.WiFi-PDR fused indoor positioning based on Kalman filtering[J].Journal of University of Electronic Science and Technology of China,2016,45(3):399-404. [21]ZHOU Cheng,YUAN Jia-zheng,LIU Hong-zhe,et al.Bluetooth indoor positioning based on RSSI and Kalman filter[J].Wireless Personal Communications,2017,96(3):4115-4130. [22]ZHU Da-li,ZHAO Bo-bai,WANG Si-ye.Mobile target indoor tracking based on multi-direction weight position Kalman filter[J].Computer Networks,2018,141:115-127. [23]SONG Dong-ran,YANG Jian,DONG Mi,et al.Kalman filter-based wind speed estimation for wind turbine control[J].International Journal of Control Automation & Systems,2017,15(3):1089-1096. [24]周 牧,耿小龙,谢良波,等.室内WiFi/PDR自适应鲁棒卡尔曼滤波融合定位方法[J].电子学报,2019,47(1):9-15. ZHOU Mu,GENG Xiao-long,XIE Liang-bo,et al.Indoor WiFi /PDR fusion localization based on adaptive and robust Kalman filter[J].Acta Electronica Sinica,2019,47(1):9-15. [25]孙 伟,段顺利,闫慧芳,等.基于卡尔曼平滑的AWKNN室内定位方法[J].电子科技大学学报,2018,47(6):829-833. SUN Wei,DUAN Shun-li,YAN Hui-fang,et al.AWKNN indoor location methods based on Kalman smoothing[J].Journal of University of Electronic Science and Technology of China,2018,47(6):829-833. [26]邵小强,李康乐,陈 熙,等.基于改进卡尔曼滤波和参数拟合的矿井TOA定位方法[J].煤炭学报,2019,44(5):1616-1624. SHAO Xiao-qiang,LI Kang-le,CHEN Xi,et al.TOA positioning method of coalmine based on Kalman filter and parameter fitting[J].Journal of China Coal Society,2019,44(5):1616-1624. 冯 健,史丹丹,罗香玉,等.利用节点重要度和社团接近度发现社团结构[J].西安科技大学学报,2020,40(1):181-186. FENG Jian,SHI Dan-dan,LUO Xiang-yu,et al.Discovering community structure using node importanceand community proximity[J].Journal of Xi'an University of Science and Technology,2020,40(1):181-186.


收稿日期:2019-03-20 责任编辑:高 佳
通信作者:冯 健(1973-),女,陕西西安人,博士,副教授,E-mail:fengjian@xust.edu.cn
更新日期/Last Update: 2020-02-15