[1]庞传山,高海军,景宏君,等.考虑时间因素的加筋土应力-应变关系[J].西安科技大学学报,2020,(01):118-125.
 PANG Chuan-shan,GAO Hai-jun,JING Hong-jun,et al.Stress-strain relationship of reinforced soil considering time factor[J].Journal of Xi'an University of Science and Technology,2020,(01):118-125.
点击复制

考虑时间因素的加筋土应力-应变关系(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2020年01期
页码:
118-125
栏目:
出版日期:
2020-02-15

文章信息/Info

Title:
Stress-strain relationship of reinforced soil considering time factor
文章编号:
1672-9315(2020)01-0118-08
作者:
庞传山1高海军2景宏君34叶万军34陈 斐5
(1.陕西省水务集团有限公司,陕西 西安 710068; 2.陕西省延安公路管理局,陕西 延安 716100; 3.西安科技大学 建筑与土木工程学院,陕西 西安 710054; 4.西安科技大学 道路工程研究中心,陕西 西安 710054; 5.长安大学 公路学院,陕西 西安 710054)
Author(s):
PANG Chuan-shan1GAO Hai-jun2JING Hong-jun34YE Wan-jun34CHEN Fei5
(1.Shaanxi Water Affair Group Co.,Ltd.,Xi'an 710068,China; 2.Shaanxi Yan'an Road Administrative Bureau,Yan'an 716100,China; 3.College of Civil and Architectural Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 4.Road Engineering Research Center,Xi'an University of Science and Technology,Xi'an 710054,China; 5.School of Highway,Chang'an University,Xi'an 710054,China)
关键词:
土木工程 加筋土 筋土相对位移 应力-应变关系
Keywords:
civil engineering reinforced soil relative displacement of reinforced soil stress-strain relationship
分类号:
TU 43
文献标志码:
A
摘要:
加筋土结构在工程行业有着广泛的应用,但是加筋材料的蠕变特性带来了很多的工程问题。当前虽然已有考虑加筋材料蠕变对加筋土变形影响的研究,但考虑的因素依旧不够全面,鉴于此进行了考虑筋土相对位移与时间因素的加筋复合材料应力应变关系的推导。基于自洽理论推导了加筋复合材料中筋土微观应变比例关系的计算方法,并将该式应用到了考虑时间因素的加筋复合材料应力-应变关系推导当中,得出了加筋复合材料水平应变表达式,确定了影响变形发展速度和最终变形量的关键参数。随后选取一实例对该公式进行了规律分析。研究表明加筋材料和填料微观应变比值只与填料和加筋材料的泊松比、弹性模量和体积占比有关,且在性质相同的填料中埋入的加筋材料弹性模量越大,该比值越小; 筋材的粘滞系数决定了应变的发展速度,参量(E1+E2)/E1E2和进入塑性变形时的应力水平共同决定了稳定后的变形值,因此在选择加筋材料时,应当进行蠕变试验选取参量较小的材料; 加筋材料的蠕变对加筋体变形的影响非常显著,且水平应变主要产生在塑性变形阶段,其随时间的发展逐渐增大,但增长速率逐步放缓,最后趋于稳定,在设计选材及变形计算中应当尤为注意这一点。
Abstract:
Reinforced earth structure has been widely used in engineering industry,but the creep characteristics of reinforced materials bring many engineering problems.At present,although theinfluence of creep of reinforced material on deformation of reinforced soil has been studied,the factors considered are still not comprehensive enough.In view of this,the relationship between stress and strain of reinforced composite material considering relative displacement of reinforced soil and time factors is deduced.Based on the self-consistent theory,this paper deduced the calculating method of the micro-strain ratio of reinforcement and soil in reinforced composites,applied this formula to the derivation of the stress-strain relationship of reinforced composites considering the time factor,obtained the expression of the horizontal strain of reinforced composites,and determined the key parameters affecting the development speed and final deformation.Then an example was selected to analyze the rule of the formula.The results show that the ratio of micro-strain of reinforced materials and fillers is only related to Poisson's ratio,elastic modulus and volume ratio of fillers and reinforced materials,and the larger the elastic modulus of reinforced materials embedded in fillers with the same properties,the smaller the ratio.The viscous coefficient of reinforcement determines the strain development speed,and the deformation value after stabilization is determined by both the parameters and the stress level when plastic deformation occurs.Therefore,creep tests should be carried out to select materials with smaller parameters when selecting reinforced materials.The creep of reinforced material has a very significant effect on the deformation of the reinforced body,and the horizontal strain mainly occurs in the plastic deformation stage.The strain value increases gradually with the development of time,but the growth rate slows down gradually,and finally tends to be stable.This should be paid special attention to in the design,selection of materials and deformation calculation.

参考文献/References:

[1] 张 伟.阿尔及利亚东西高速公路加筋土路堤设计[J].西安科技大学学报,2015,35(6):774-779. ZHANG Wei.Design of Algeria east-west highway reinforced embankment[J].Journal of Xi'an University of Science and Technology,2015,35(6):774-779. [2]邓念东,侯恩科,樊怀仁,等.基于有限元分析的加筋土挡墙结构优化设计[J].西安科技大学学报,2007,27(2):218-223. DENG Nian-dong,HOU En-ke,FAN Huai-ren,et al.Structure optimization of reinforced earth retaining wall based on finite element analysis[J].Journal of Xi'an University of Science and Technology,2007,27(2):218-223. [3]叶观宝,张 振,邢皓枫,等.面板对路堤式加筋土挡墙力学特性的影响[J].岩土力学,2012,33(3):881-886. YE Guan-bao,ZHANG Zhen,XING Hao-feng,et al.Influence of facing on mechanical behavior of reinforced retaining wall for embankment[J].Rock and Soil Mechanics,2012,33(3):881-886. [4]Tavakoli Mehrjardi G,Behrad R,Moghaddas Tafreshi S N.Scale effect on the behavior of geocell-reinforced soil[J].Geotextiles and Geomembranes,2019,47(2):154-163. [5]ZHANG C L,JIANG G L,LIU X F,et al.Arching in geogrid-reinforced pile-supported embankments over silty clay of medium compressibility:Field data and analytical solution[J].Computers and Geotechnics,2016,77:11-25. [6]Mekonnen A W,Mandal J N.Behaviour of bamboo-geogrid reinforced fly ash wall under applied strip load[J].International Journal of Geosynthetics and Ground Engineering,2017,3(3):24-33. [7]李献民,王永和,杨果林,等.高速下过渡段路基动响应特性研究[J].岩土工程学报,2004,24(1):100-104. LI Xian-min,WANG Yong-he,YANG Guo-lin,et al.Study on the dynamic response of transition section roadbed subject to high speed[J].Chinese Journal of Geotechnical Engineering,2004,24(1):100-104. [8]吴顺川,金爱兵,王金安.车辆荷载下路基挡土结构失稳机理数值模拟[J].岩土力学,2007,28(2):258-262. WU Shun-chuan,JIN Ai-bing,WANG Jin-an.Numerical simulation of failure mechanism of subgrade retaining structure under vehicle load[J].Rock and Soil Mechanics,2007,28(2):258-262. [9]Harrison W J,Gerrard C M.Elastic theory applied to reinforced earth[J].Journal of the Soil Mechanics & Foundations Division,1972,98(12):1325-1345. [10]Sawicki A.Engineering mechanics of elasto-plastic composites[J].Mechanics of Materials,1983,2(3):217-231. [11]Sawicki A,Kulczykowski M.Pre-failure behaviour of reinforced soil[J].Geotextiles & Geomembranes,1994,13(4):213-230. [12]Shukla S K,Chandra S.A generalized mechanical model for geosynthetic-reinforced foundation soil[J].Geotextiles & Geomembranes,1994,13(12):813-825. [13]周世良,刘占芳,王多垠,等.格栅加筋土挡墙数值分析的复合材料方法[J].岩石力学与工程学报,2006,25(11):2327-2334. ZHOU Shi-liang,LIU Zhan-fang,WANG Duo-gen,et al.Composite material method for numerical analysis of geogrid reinforced soil retaining wall[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(11):2327-2334. [14]ZOU C,WANG Y M,LIN J Y,et al.Creep behaviors and constitutive model for high density polyethylene geogrid and its application to reinforced soil retaining wall on soft soil foundation[J].Construction and Building Materials,2016,114:763-771. [15]肖成志,栾茂田,杨 庆,等.考虑格栅蠕变性的筋土复合体应力计算方法[J].大连理工大学学报,2006,46(1):80-86. XIAO Cheng-zhi,LUAN Mao-tian,YANG Qing,et al.A calculation method of micro-stress of composite media composed of reinforcements and soils considering creep effect of geogrids[J].Journal of Dalian University of Technology,2006,46(1):80-86. [16]李丽华,王 钊,陈 轮.考虑筋材蠕变特性的加筋土流变模型[J].岩土力学,2007,28(8):1687-1690. LI Li-hua,WANG Zhao,CHEN Lun.Rheological model considering creep of geosynthetics for reinforced soil[J].Rock and Soil Mechanics,2007,28(8):1687-1690. [17]周志刚,李雨舟.基于土工格栅黏弹特性的加筋土本构模型研究[J].岩石力学与工程学报,2011,30(4):850-857. ZHOU Zhi-gang,LI Yu-zhou.Research on constitutive model of reinforced soil considering viscoelasticity of geogrids[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(4):850-857. [18]周志刚,李雨舟.土工格栅蠕变特性及其黏弹塑性损伤本构模型研究[J].岩土工程学报,2011,33(12):1943-1949. ZHOU Zhi-gang,LI Yu-zhou.Creep properties and viscoelastic-plastic-damaged constitutive model of geogrid[J].Chinese Journal of Geotechnical Engineering,2011,33(12):1943-1949. [19]王 磊,朱 斌,李俊超,等.一种纤维加筋土的两相本构模型[J].岩土工程学报,2014,36(7):1326-1333. WANG Lei,ZHU Bin,LI Jun-chao,et al.Two-phase constitutive model for fiber-reinforced soil[J].Chinese Journal of Geotechnical Engineering,2014,36(7):1326-1333. [20]王 贺.静动荷载作用下高速铁路土工格栅加筋土挡墙结构行为研究[D].北京:北京交通大学,2016. WANG He.Research on structural behavior of geogrid reinforced soil retaining wall under static or dynamic loads[D].Beijing:Beijing Jiaotong University,2016. [23]邱继生,王民煌,关 虓,等.钢纤维煤矸石混凝土冻融后本构关系试验研究[J].西安科技大学学报,2018,38(5):743-750. QIU Ji-sheng,WANG Min-huang,GUAN Xiao,et al.Experimental study on constitutive relationship after freeze-thaw of steel fiber gangue concrete[D].Journal of Xi'an University of Science and Technology,2018,38(5):743-750. [24]莫介臻,周世良,何光春,等.加筋土挡墙潜在破裂面模型试验研究[J].铁道学报,2007,29(6):69-73. MO Jie-zhen,ZHOU Shi-liang,HE Guang-chun,et al.Study on potential failure surface model of reinforced soil retaining walls[J].Journal of the China Railway Society,2007,29(6):69-73. [25]曾广胜,翟金平.聚合物粘弹性及其力学模型[J].华南理工大学学报(自然科学版),2005,33(2):14-18. ZENG Guang-sheng,ZHAI Jin-ping.Viscoelasticity and its mechanical model of polymer[J].Journal of South China University of Technology(Natural Science),2005,33(2):14-18. [26]Sawicki A.Creep of geosynthetic reinforced soil retaining walls[J].Geotextiles and Geomembranes,1999,17(1):51-65.

相似文献/References:

[1]李 锐.地下轨道与城市道路及综合管廊大断面共建[J].西安科技大学学报,2018,(03):466.[doi:10.13800/j.cnki.xakjdxxb.2018.0317]
 LI Rui.Construction of underground urban rail and urban roadsand integrated corridors[J].Journal of Xi'an University of Science and Technology,2018,(01):466.[doi:10.13800/j.cnki.xakjdxxb.2018.0317]
[2]魏建强.低温下碳纤维混凝土电热效应实验[J].西安科技大学学报,2018,(03):473.[doi:10.13800/j.cnki.xakjdxxb.2018.0318]
 WEI Jian-qiang.Effect of thermoelectricity on carbon fiber reinforced concrete under low temperatures[J].Journal of Xi'an University of Science and Technology,2018,(01):473.[doi:10.13800/j.cnki.xakjdxxb.2018.0318]
[3]邱继生,王民煌,关 虓,等.钢纤维煤矸石混凝土冻融后本构关系试验研究[J].西安科技大学学报,2018,(05):743.[doi:10.13800/j.cnki.xakjdxxb.2018.0508]
 QIU Ji-sheng,WANG Min-huang,GUAN Xiao,et al.Experimental study on constitutive relationship after freeze-thaw of steel fiber gangue concrete[J].Journal of Xi'an University of Science and Technology,2018,(01):743.[doi:10.13800/j.cnki.xakjdxxb.2018.0508]
[4]杨建华.饱和软黄土地层地铁隧道施工诱发的地表变形[J].西安科技大学学报,2018,(01):91.[doi:10.13800/j.cnki.xakjdxxb.2018.0114]
 YANG Jian-hua.Surface deformation induced by tunnel construction in saturated soft loess strata[J].Journal of Xi'an University of Science and Technology,2018,(01):91.[doi:10.13800/j.cnki.xakjdxxb.2018.0114]
[5]冯晓光.土木工程专业大学生就业与专业实践的关系[J].西安科技大学学报,2012,(05):667.
 FENG Xiao-guang.On the relationship between obtaining employment and practice of civil engineering graduates[J].Journal of Xi'an University of Science and Technology,2012,(01):667.
[6]李海龙.大跨矿山法隧道长距离下穿高压燃气管技术[J].西安科技大学学报,2019,(04):178.[doi:10.13800/j.cnki.xakjdxxb.2019.0422]
 LI Hai-long.Technology for large-span mine tunnel long-distance crossing underneath high-pressure gas pipeline[J].Journal of Xi'an University of Science and Technology,2019,(01):178.[doi:10.13800/j.cnki.xakjdxxb.2019.0422]

备注/Memo

备注/Memo:
收稿日期:2019-01-11 责任编辑:杨忠民
基金项目:安徽省交通控股集团有限公司科技项目(JKKJ-2018-14)
通信作者:马 天(1979-),男,安徽合肥人,硕士,高级工程师,E-mail:546119025@qq.com
更新日期/Last Update: 2020-02-15