[1]庞华锋,顾马龙,李百宏.氮化铝声表面波器件表面微液滴的声表面波操控研究[J].西安科技大学学报,2019,(06):1090-1096.
 PANG Hua-feng,GU Ma-long,LI Bai-hong.Microdroplets manipulation using surface acoustic waves on the hydrophobic surface of AlN-based devices[J].Journal of Xi'an University of Science and Technology,2019,(06):1090-1096.
点击复制

氮化铝声表面波器件表面微液滴的声表面波操控研究(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2019年06期
页码:
1090-1096
栏目:
出版日期:
2019-12-20

文章信息/Info

Title:
Microdroplets manipulation using surface acoustic waves on the hydrophobic surface of AlN-based devices
文章编号:
1672-9315(2019)06-1090-07
作者:
庞华锋顾马龙李百宏
(西安科技大学 理学院,陕西 西安 710054)
Author(s):
PANG Hua-fengGU Ma-longLI Bai-hong
(College of Sciences,Xi'an University of Science and Technology,Xi'an 710054,China)
关键词:
微流体 声学操控 氮化铝薄膜 声表面波器件
Keywords:
microfluidics acoustic manipulation AlN thin film surface acoustic wave device
分类号:
TN 65
文献标志码:
A
摘要:
声学操控是实现芯片级微流体操控的重要方法之一,如何实现在新型压电器件表面用声表面波有效驱动操控微升量级流体是该方法中一个非常关键的问题。通过在氮化铝薄膜声表面波器件表面滴放不同体积微液滴,在微尺度下利用高速摄相机和红外热像仪研究分析了声表面波操控雷诺数较小的液滴流体力学特征和声波热效应。结果显示在较低加载功率条件下观察到声波激发液滴内粒子流场轨迹呈现出典型稳定的双涡旋蝶形结构; 而加载功率继续增大时,液滴定向输运过程中输运速率随加载功率增加而增大,进一步在较高功率下液滴出现了喷射现象,进而从理论上讨论了上述特征中的耦合操控机理。同时,观察到微液滴操控过程中的声波加热效应,液滴温度变化量随加载功率呈正比线性增大趋势,但在较高功率时出现偏离。对比分析了器件表面特定位置滴放微液滴前后器件表面温度和液滴温度变化量分别随加载功率线性增大的特点,提出液滴内热量的来源以液滴内的声波因克服流体粘滞阻力做功产生的贡献占主导。
Abstract:
The acoustic manipulation is one of the important methods to control the microfluid on a chip.It is also a vital problem how to realize the effective control of the micro-liter fluid on the surface of the novel piezoelectric device.The microfluidics of the microscale droplet with different volumes on the hydrophobic surface of the AlN-based surface acoustic wave(SAW)device was investigated using a high-speed camera.The heating effect of the SAW on the droplet and surface of the device was observed and analyzed using an infrared thermal camera.The results showed that the flow pattern had a butterfly microstructure with double vortex in the droplet interacting with the acoustic wave when the device was applied with a relatively low power.The pumping speed of the droplet along the SAW propagation direction was increased with the applied power growing,resulting in the jetting at a relatively high power.The coupling mechanism of the above manipulation was discussed using the reported microfluidic theory.The heating effect of the SAW on the droplet was analyzed.The temperature variation of the droplet was proportional to the applied power; however,the relation was deviated at a relatively large power.The linear characteristic of the variation of the temperature with the increased power on the surface of the device was compared with that in the droplet.The heat was proposed that mainly originated from the work produced against the viscous force of the fluid in the droplet coupled with the SAW.

参考文献/References:

[1] Wixforth A.Acoustically driven programmable microfluidics for biological and chemical applications[J].Journal of the Association for Laboratory Automation,2006,11(6):399-405. [2]Yeo L Y,Friend J R.Surface acoustic wave microfluidics[J].Annual Review of Fluid Mechanics,2014,46(1):379-406. [3]Ding X,Lin S C S,Kiraly B,et al.On-chip manipulation of single microparticles,cells,and organisms using surface acoustic waves[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(28):11105-11109. [4] Franke T,Braunmuller S,Schmid L,et al.Surface acoustic wave actuated cell sorting(SAWACS)[J].Lab on Chip,2010,10(6):789-794 [5] Reboud J,Bourquin Y,Wilson R,et al.Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(38):15162-15167. [6] 蒋 鹏,孟 龙,蔡飞燕,等.基于声表面波的微操控技术研究进展[J].集成技术,2013(5):42-47. JIANG Peng,MENG Long,CAI Fei-yan,et al.Progress in micro-scale acoustic manipulation based on surface acoustic wave[J].Journal of Integration Technology,2013(5):42-47. [7] Ding X,Lin S C,Lapsley M I,et al.Standing surface acoustic wave(SSAW)based multichannel cell sorting[J].Lab on Chip,2012,12(21):4228-4231 [8]Shi J,Ahmed D,Mao X,et al.Acoustic tweezers:patterning cells and microparticles using standing surface acoustic waves(SSAW)[J].Lab on Chip,2009,9(20):2890-2895. [9] 左友康,韩 韬.基于声表面波的微液滴驱动[J].压电与声光,2010,32(3):343-345. ZUO You-kang,HAN Tao.Droplet driven based on surface acoustic wave streaming[J].Piezoelectrics & Acoustooptics,2010,32(3):343-345. [10] 章安良,夏兴华.基于声表面波技术实现数字微流体多基片间输运[J].分析化学,2011,39(5):765-769. ZHANG An-liang,XIA Xing-hua.Transporting digital micro-fluids among multi-chips based on surface acoustic wave[J].Chinese Journal of Analytical Chemistry,2011,39(5):765-769. [11]庞华锋.氮化铝多层膜制备及其声表面波器件性能表征[J].西安科技大学学报,2016,36(6):899-903. PANG Hua-feng.Characterization of the AlN multilayer films and their application on surface acoustic wave devices[J].Journal of Xi'an University of Science and Technology,2016,36(6):899-903. [12]Alghane M,Fu Y Q,Chen B X,et al.Streaming phenomena in microdroplets induced by Rayleigh surface acoustic wave[J].Journal of Applied Physics,2011,109:114901. [13]Alghane M,Fu Y Q,Chen B X,et al.Frequency effect on streaming phenomenon induced by Rayleigh surface acoustic wave in microdroplets[J].Journal of Applied Physics,2012,112:084902. [14]Alghane M,Chen B X,Fu Y Q,et al.Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a 128 YX-LiNbO3 substrate[J].Journal of Micromechanics and Microengineering,2010,21(1):015005. [15] Alghane M,Fu Y Q,Chen B X,et al.Streaming phenomena in microdroplets induced by Rayleigh surface acoustic wave[J].Journal of Applied Physics,2011,109:114901. [16]Guo Y J,Lv H B,Li Y F,et al.High frequency microfluidic performance of LiNbO3 and ZnO surface acoustic wave devices[J].Journal of Applied Physics,2014,116(2):024501. [17]Alghane M,Chen B X,Fu Y Q,et al.Nonlinear hydrodynamic effects induced by Rayleigh surface acoustic wave in sessile droplets[J].Physics Review E,2012,86:056304. [18] Pang H F,Fu Y Q,Garcia-Gancedo L,et al.Enhancement of microfluidic efficiency with nanocrystalline diamond interlayer in the ZnO-based surface acoustic wave device[J].Microfluidics and Nanofluidics,2013,15(3):377-386 [19]Zhou J,Pang H F,Garcia-Gancedo L,et al.Discrete microfluidics based on aluminum nitride surface acoustic wave devices[J].Microfluidics and Nanofluidics,2015,18(4):537-548 [20]Du X Y,Fu Y Q,Luo J K,et al.Microfluidic pumps employing surface acoustic waves generated in ZnO thin films[J].Journal of Applied Physics,2009,105:024508. [21] Fu Y Q,Garcia-Gancedo L,Pang H F,et al.Microfluidics based on ZnO nanocrystalline diamond surface acoustic wave devices[J].Biomicrofluidics,2012(6):024105. [22]Zhou J,DeMiguel-Ramos M,Garcia-Gancedo L,et al.Characterisation of aluminium nitride films and surface acoustic wave devices for microfluidic applications[J].Sensors and Actuators B,2014,202:984-992. [23]Wang Y,Xu Z,Xie J.A study on AIN film-based SAW attenuation in liquids and their potential as liquid ethanol sensors[J].Sensors,2017,17(8):1813-1815. [24]Anisimkin V I,Kuznetsova I E.Selective surface acoustic wave detection of the temperature of a liquid microsample[J].Journal of Communications Technology and Electronics,2019,64(8):823-826. [25]Caliendo C,Imperatori P,Cianci E.Structural,morphological and acoustic properties of AlN thick films sputtered on Si(001)and Si(111)substrates at low temperature[J].Thin Solid Films,2003,441:32-37. [26]韩 超,高 杨,张大鹏.高功率体声波谐振器的自热效应及其修正[J].光学精密工程,2018,26(9):2229-2235. HAN Chao,GAO Yang,ZHANG Da-peng.Self-heating effect and its modification of high power bulk acoustic-wave resonators[J].Optics and Precision Engineering,2018,26(9):2229-2235. [27]Guttenberg Z,Mülle H,Habermüller H,et al.Planar chip device for PCR and hybridization with surface acoustic wave pump[J].Lab on A Chip,2005,5(3):308-317. [28]Kondoh J,Shimizu N,Matsui Y,et al.Development of temperature-control system for liquid droplet using surface Acoustic wave devices[J].Sensors and Actuators A,2009,149:292-297. [29]Tao R,Hasan S A,Wang H Z,et al.Bimorph material/structure designs for high sensitivity flexible surface acoustic wave temperature sensors[J].2018,8:9052. [30]Nam J,Jang W S,Kim J,et al.Lamb wave-based molecular diagnosis using DNA hydrogel formation by rolling circle amplification(RCA)process[J].2019,142:111496.

备注/Memo

备注/Memo:
收稿日期:2019-01-07 责任编辑:李克永
基金项目:国家自然科学基金(11504291,11504292); 西安科技大学培育基金(201343)
通信作者:庞华锋(1980-),男,河南镇平人,博士,讲师,E-mail:panghuafeng@xust.edu.cn
更新日期/Last Update: 2019-12-20