[1]杜美利,杨 敏,杨 瑞,等.贵州大河边矿煤显微组分解离规律及其分选[J].西安科技大学学报,2019,(06):950-956.
 DU Mei-li,YANG Min,YANG Rui,et al.Dissociation law and sorting ofmacerals of Dahebian coal from Guizhou[J].Journal of Xi'an University of Science and Technology,2019,(06):950-956.
点击复制

贵州大河边矿煤显微组分解离规律及其分选(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2019年06期
页码:
950-956
栏目:
出版日期:
2019-12-20

文章信息/Info

Title:
Dissociation law and sorting ofmacerals of Dahebian coal from Guizhou
文章编号:
1672-9315(2019)06-0950-07
作者:
杜美利1杨 敏12杨 瑞12朱晨浩12朱 超12任 辉3
(1.西安科技大学 化学与化工学院,陕西 西安 710054; 2.国土资源部煤炭资源勘查与综合利用重点实验室,陕西 西安 710054; 3.陕西煤田地质化验测试有限公司,陕西 西安 710054)
Author(s):
DU Mei-li1YANG Min12YANG Rui12ZHU Chen-hao12ZHU Chao12REN Hui3
(1.College of Chemistry and Chemical Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 2.Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Land and Resources,Xi'an 710054,China; 3.Shaanxi Coalfield Geological Testing Co.,Ltd.,Xi'an 710054,China)
关键词:
矿物加工工程 显微组分 密度梯度离心 解离规律 分选
Keywords:
mineral process engineering macerals density gradient centrifugation dissociation law sorting
分类号:
TD 94
文献标志码:
A
摘要:
以贵州大河边矿煤为研究对象,确定了其在显微光学条件下煤岩显微组分的组成、赋存状态及含量特征,同时采用XRD衍射技术分析了原煤中矿物组成。通过对原煤的破碎解离,进而研究了壳质组、镜质组和惰质组在不同粒级的解离规律,在此基础上使用密度梯度离心的方法研究了显微组分的分选,并验证了超声辅助对分选效果的影响。结果表明:原煤中壳质组分布方式主要以片状、细脉状形式存在,与镜质组紧密连生,轮廓清晰; 镜质组主要以团块状形式出现,具有明显内生裂纹; 惰质组主要包括丝质体和半丝质体2大类,半丝质体单体粒度较小,部分具有鳞片状结构,丝质体细胞结构保存十分完好。各粒级显微组分单体解离度随着破碎程度的加深逐渐增大,其中破碎对镜质组和惰质组的解离效果更加明显,3种显微组分最佳解离粒度为0.125~0.074 mm。壳质组、镜质组和惰质组的最佳分选密度分别为-1.15,1.27~1.29,1.33~1.35 g·cm-3,超声辅助有利于提高壳质组的分选效果。
Abstract:
With coal from Dahebian coal mine taken as study object,the composition,distribution ccurence and content of macerals were determined under microscopic condition.At the same time,the mineral composition of raw coal was studied by XRD diffraction technique.Furthermore,the dissociation law of the exinite,vitrinite and incrtinite under different crushing size were analyzed by breaking and dissociating the raw coal.Based on this,the separation of macerals were studied by density gradient centrifugation,and the sorting effect after ultrasound assisted was verified.The results showed that the exinite in the raw coal mainly exists in the form of flakes and fine veins,which is closely associated with the vitrinite,and there is a clear boundary line between them; the vitrinite mainly appears in the form of agglomerates,with obvious endogenous cracks; the incrtinite mainly consists of two major categories of fusinite and semifusinite,in which the fusinite has a small particle size and part of them have a scaly structure,and the cell structure of semifusinite is completely preserved.The free fraction degree of each maceral increases with the degree of fragmentation increases,and the dissociation effect of the fragmentation on the vitrinite and the incrtinite is more obvious.The optimal dissociation particle size of three macerals is 0.125~0.074 mm.The optimal separation densities of the exinite,thevitrinite and the incrtinite is -1.15,1.27~1.29 g·cm-3,and 1.33~1.35 g·cm-3,respectively.The assistance of ultrasound is beneficial to improving the sorting effect of the exinite.

参考文献/References:

[1] Van Krevelen D W.Coal:typology-chemistry-constitution(3rd ed)[J].Amsterdam:Elsevier,1993,382(24):173-191. [2]忻仕河,徐振刚.大同煤不同显微组分富集物焦与CO2反应性研究[J].煤炭转化,2004(4):13-16. XIN Shi-he,XU Zhen-gang.Research into reactivity of char from coal maceral concentrates during gasification With CO2[J].Coal Conversion,2004(4):13-16. [3]Mokone J,Roberts Raymond C,Everson,et al.Influence of maceral composition on the structure,properties and behaviour of chars derived from South African coals[J].Fuel,2015,142:9-20. [4]Malumbazo N,Wagner N J,Bunt J R,et al.Structural analysis of chars generated from South African inertinite coals in a pipe-reactor combustion unit[J].Fuel Processing Technology,2011,92(4):743-749. [5]白云起,白青子,赵宪德.基于煤岩组分和镜质组反射率的焦炭质量预测模型[J].黑龙江科技大学学报,2018,28(3):249-252. BAI Yun-qi,BAI Qing-zi,ZHAO Xian-de.Prediction model of coke quality based on coal components and vitrinitereflectance[J].Journal of Heilongjiang University of Science and Technology,2018,28(3):249-252. [6]门东坡.气煤煤岩组分破碎解离及其富集物配煤炼焦规律研究[D].北京:中国矿业大学(北京),2017. MEN Dongpo.Study on the maceral crushing and liberation and on the coal blending coking for gas coal[D].Beijing:China University of Mining and Technology(Beijing),2017. [7]邢宝林,郭 晖,谌伦建,等.煤岩显微组分对活性炭孔结构及电化学性能的影响[J].煤炭学报,2014,39(11):2328-2334. XING Bao-lin,GUO Hui,CHEN Lun-jian,et al.Effects of coal macerals on the pore structure and electrochemical performances of activated carbon[J].Journal of China Coal Society,2014,39(11):2328-2334. [8]谷天野.显微组分对大同煤加工和转化影响的研究[D].北京:中国矿业大学,2010. GU Tian-ye.Study on the effect of macerals on Datong coal processing and conversion[D].China University of Mining and Technology,2010. [9]YE Dao-min,HUO Lin-he.Brown coal's macerals and liquefying properties with hydrogen[J].Coal Geology & Exploration,2005,33(6):1-4. [10]陈洪博,郭 治.神东煤不同显微组分加氢液化性能及转化规律[J].煤炭转化,2006(4):9-12. CHEN Hong-bo,GUO Zhi.Study on hydroliquefacation behaviour and rules of Shendong coal macerals[J].Coal Convertion,2006(4):9-12. [11]李小彦.论煤岩组分的液化性能[J].煤田地质与勘探,2010,38(3):1-5. LI Xiao-yan.Discussion on liquefaction reactivity of lithotype and maceral of low rank coal[J].Coal Geology & Exploration,2010,38(3):1-5. [12]WANG Shao-qing,TANG Yue-gang,Harold H S,et al.Liquefaction reactivity and 13C-NMR of coals rich in barkinite and semi-fusinite[J].Journal of Fuel Chemistry and Technology,2010,38(2):129-133. [13]李德平,姚伯元,张代林,等.不同变质程度煤镜质组活性质量研究[J].煤炭学报,2013,38(10):1862-1867. LI De-ping,YAO Bo-yuan,ZHANG Dai-lin,et al.Study on vitrinite activity quality in different metamorphic grade coals[J].Journal of China Coal Society,2013,38(10):1862-1867. [14]ZHANG Lei,LIU Wen-li,MEN Dong-po.Preparation and coking properties of coal maceral concentrates[J].International Journal of Mining Science and Technology,2014,24(1):93-98. [15]段旭琴,王祖讷,孙春宝.神府煤显微组分表面性质研究[J].中国矿业大学学报,2007,36(5):630-635. DUAN Xu-qin,WANG Zu-ne,SUN ChunVbao.Surface properties of macerals from Shenfu coal[J].Journal of University of Mining & Technology,2007,36(5):630-635. [16]胡 波,陶秀祥,王市委,等.煤岩组分解离及其检测方法[J].选煤技术,2011(3):4-7. HU Bo,TAO Xiu-xiang,WANG Shi-wei,et al.Research on liberation and detection method of maceral[J].Coal Preparation Technology,2011(3):4-7. [17]郑学召,赵 炬,张 铎,等.不同变质程度煤介电常数特性[J].西安科技大学学报,2019,39(3):469-474. ZHENG Xue-zhao,ZHAO Ju,ZHANG Duo,et al.Dielectric constant characteristics of different metamorphic coals[J].Journal of Xi'an University of Science and Technology,2019,39(3):469-474. [18]Dyrkacz G R,Horwitz E P.Separation of coal macerals[J].Fuel,1982,61(1):3-12. [19]Barraza J,Pineres J.A pilot-scale flotation column to produce beneficiated coal fractions having high concentration of vitrinitemaceral[J].Fuel,2005,84:1879-1883. [20]SHU Xin-qian,WANG Zu-na,XU Jing-qiu.Separation and preparation of macerals in Shenfu coals by flotation[J].Fuel,2002,81(4):49-501. [21]赵 伟,赵世永,杨志远,等.AlCl3对煤岩组分浮选分离的影响[J].煤炭学报,2015,40(S1):185-190. ZHAO Wei,ZHAO Shi-yong,YANG Zhi-yuan,et al.Influence of AlCl3 on flotation separation of coal macerals[J].Journal of China Coal Society,2015,40(S1):185-190. [22]韩德鑫.中国煤岩学[M].徐州:中国矿业大学出版社,1996. HAN De-xin.Coal petrologic of china[M].Xuzhou:China University of Mining and Technology Press,1996. [23]许耀群,李曙光,王 娟,等.超声波及分散剂对纳米SiO2/CaCO3/Al2O3颗粒分散特性的影响[J].材料导报,2018,32(S1):300-304. XU Yao-qun,LI Shu-guang,WANG Juan,et al.Effect of dispersion characteristics of nano-SiO2/CaCO3/Al2O3 by ultrasonic and dispersants[J].Materials Review,2018,32(S1):300-304.

备注/Memo

备注/Memo:
收稿日期:2019-04-20 责任编辑:刘 洁
基金项目:国家自然基金(4167020886)
通信作者:杜美利(1962-),男,陕西西安人,教授,博士生导师,E-mail:321540950@qq.com
更新日期/Last Update: 2019-12-20