[1]陈晓坤,刘 著,王秋红.瓦斯爆炸CH/CHO/C2自由基光谱特征研究[J].西安科技大学学报,2019,(05):745-752.[doi:10.13800/j.cnki.xakjdxxb.2019.0502]
 CHEN Xiao-kun,LIU Zhu,WANG Qiu-hong.Spectral characteristics of CH/CHO/C2 radical in gas explosion[J].Journal of Xi’an University of Science and Technology,2019,(05):745-752.[doi:10.13800/j.cnki.xakjdxxb.2019.0502]





Spectral characteristics of CH/CHO/C2 radical in gas explosion
陈晓坤12刘 著12王秋红12
(1.西安科技大学 安全科学与工程学院,陕西 西安 710054; 2.西安科技大学 西部矿井开采及灾害防治教育部重点实验室,陕西 西安 710054)
CHEN Xiao-kun12LIU Zhu12WANG Qiu-hong12
gas explosion radical signal time relative radiation intensity
O 433.4
为研究瓦斯爆炸火焰中自由基特征光谱的特征,利用爆炸管道进行不同浓度瓦斯爆炸实验,采用高速摄像仪、单色仪来研究分析瓦斯爆炸火焰中CH/CHO/C23种自由基发光光谱的特征。结果表明:随着瓦斯浓度的增大,3种自由基信号出现时间、消失时间、存在时间和到达极值时间都呈现先减小后增大的趋势; 3种自由基在同一位置的存在时间随瓦斯浓度的改变并没有明显的规律,但都在13%瓦斯浓度下存在时间达到最长; 随着瓦斯浓度的增大,同一位置3种自由基最大相对辐射强度都呈现先增大后减小的趋势,都在10%当量比达到最大; 随着瓦斯浓度的改变,3种自由基在2个位置相对辐射强度最大值的差值存在较大差异,而在10%当量比的瓦斯浓度下3种自由基在2个位置相对辐射强度最大值的差值相差不大,最大相对辐射强度差值都在15 V左右; 在同一位置,同一浓度的瓦斯爆炸过程中,3种自由基最大相对辐射强度从大到小依次是CH,CHO,C2.
In order to study the characteristics of radical characteristic spectrum in gas explosion flame,experiments of gas explosion with different concentrations were carried out by using an explosion pipe.A high-speed camera and a monochromator were used for analyzing the characteristics of luminescence spectra of CH/CHO/C2 radical in gas explosion flame.The resultsshowed that the time,in respect of appearance,disappearance,existence,together with reaching the extreme value of the three types of radical signals,all decreased first and then increased with the increase of gas concentration.There was no distinct rule for the existence time of three types of radicals with varying gas concentrations in the same position,but they all existed for the longest time at gas concentration of 13%.Furthermore,as gas concentration increased,the maximum radiation intensities of three types of radicals in the same position increased first and then decreased,and they all reached the maximums at the stoichiometric ratio of 10%.With the change of gas concentration,difference of the maximum relative radiation intensities of the three radicals located in the two positions was significant.However,the difference varied slightly at the gas concentration of 10%.Meanwhile,the maximum radiation intensities difference were approximately 15 V.Finally,in the process of gas explosion at the same concentration and position,the maximum relative radiation intensities of the types radicals were CH,CHO and C2 from the largest to the smallest.


[1] Bourayou R,Vaillon R,Sacadura J F.FTIR low resolution emission spectrometry of a laboratory-scale diffusion flame:experimental set-up[J].Experimental Thermal and Fluid Science,2002,26(2):181-187.[2]Semenov N N.Basic aspects of OH(A),CH(A),and C2(d)Chemiluminescence in the reaction zone of laminar methane-air premixed flames[J].Combustion and Flame,2005,140(1-2):34-45.[3]Kojima J,Ikeda Y,Nakajima T,at al.Chemiluminescence based diagnostics for the flame-front structure of premixed flames[J].Transactions of the Japan Society of Mechanical Engineers Series B,2003,69(678):482-489.[4]李艳红,贾宝山,曾 文.受限空间瓦斯爆炸链式反应机理特征研究[C]//2010(沈阳)国际安全科学与技术学术研讨会论文集,2010:711-715.LI Yan-hong,JIA Bao-shan,ZENG Wen.Study on mechanism characteristics of gas explosion chain reaction in confined space[C]//Proceedings of 2010(Shenyang)International Colloquium on Safety Science and Technology,2010:711-715.[5]李孝斌.矿井瓦斯爆炸感应期内反应动力学分析及光学特征研究[D].西安:西安科技大学,2009.LI Xiao-bin.Analysis of reaction dynamics and study on optical characteristic of gas explosion in induction period[D].Xi’an:Xi’an University of Science and Technology,2009.[6]邱 雁,高广伟,罗海珠.充注惰气抑制矿井火区瓦斯爆炸机[J].煤矿安全,2003,34(2):8-11.QIU Yan,GAO Guang-wei,LUO Hai-zhu.Mechanism of pumping inert gas into mine fire area for inhibition of methane explosion[J].Safety in Coal Mines,2003,34(2):8-11.[7]Nishioka M,Nakagawa S,Ishikawa Y,at al.NO emission characteristics of methane air double flame[J].Combustion and Flame,1994,98(1-2):127-138.[8]Ikeda Y,Kojima J,Nakajima T.Local chemiluminescence spectra measurement in laminar methane/air and propane/air premixed flames[J].Transactions of the Japan Society of Mechanical EngineersSeries B,2003,69:200-213.[9]Gaydon A G.The spectroscopy of flames[M].London:Chapman & Hall LTD,1974.[10]伯纳德·刘易斯,京特·冯·特尔贝.燃气燃烧与瓦斯爆炸[M].北京:中国建筑工业出版社,2007 Bernard Lewis,Guenther von Elbe,Gas burning and gas explosion[M].Beijing:China Architecture & Building Press,2007.[11]Blevins L G,Renfro M W,Lyle K H,et al.Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames[J].Combustion and flame,1999,118(4):684-696.[12]李鸿德,廖继卿,夏自柱.瓦斯煤尘爆炸火焰光谱的实验研究[J].力学学报,1988,20(4):297-303.LI Hong-de,LIAO Ji-qing,XIA Zi-zhu.Experimental study on flame spectra of gas and coal dust explosion[J].Chinese Journal of Theoretical and Applied Mechanics,1988,20(4):297-303.[13]王利东.正葵烷燃烧反应中OH,CH和C2自由基的瞬态发射光谱[J].光谱学与光谱分析,2012,32(5):1166-1169.WANG Li-dong.Transient emission spectra from OH,CH and C2 radicals in the combustion reaction of n-decameter[J].Spectroscopy and Spectral Analysis,2012,32(5):1166-1169.[14]刘晅亚.水雾作用下甲烷/空气层流预混火焰燃烧特征研究[D].合肥:中国科学技术大学,2006.LIU Xuan-ya.Study of characteristics of methane/air laminar premixed flame interacted with water mists[J].Hefei:University of Science and Technology of China,2006.[15]Smirnov N N,Nikitin V F.The influence of confinement geometry on deflagration to detonation transition in gases[J].Journal De Physique IV,2002,12(7):341-351.[16] Schildberg H P,Smeulers P M,Pape G.Experimental determination of the static equivalent pressures of gas phase detonations in pipe sand comparison with numerical models[C]//ASME 2013.Pressure Vessels and Piping Conference.Paris:France,2013.[17]Ibarreta A F.Explosion hazards of multi component combustible gas mixtures[C]//2012AIChE:Spring Meeting and 8th Global Congress on Process Safety.Houston:United states,2012.[18]Takashima S,Arai S,Hori M,et al.Development of vacuum ultraviolet absorption spectroscopy technique employing nitrogen molecule micro discharge hollow cathode lamp for absolute density measurements of nitrogen atoms in process plasmas[J].Journal of Vacuum Science and Technology A:Vacuum,Surfaces,and Films,2001,19(2):599-603.[19]谢 伟,李 萍,张昌华,等.利用OH自由基特征发射谱测量正庚烷的点火延迟时间[J].光谱学与光谱分析.2011,31(2):488-491.XIE Wei,LI Ping,ZHANG Chang-hua,et al.The ignition delay time of nheptane was measured by OH radical characteristic emission spectra[J].Spectroscopy and Spectral Analysis,2011,31(2):488-491.[20]邓 军,李会荣.瓦斯爆炸微观动力学及热力学分析[J].煤炭学报,2006,31(4):488-491.DENG Jun,LI Hui-rong.Microscopic dynamics and thermodynamic analysis of gas explosion[J].Journal of China Coal Society,2006,31(4):488-491.[21]罗振敏.链式反应理论在矿井瓦斯抑爆中的应用[J].煤矿安全,2009(2):67-69.LUO Zhen-min.Application of chain reaction theory in mine gas explosion suppression[J].Safety in Coal Mines,2009(2):67-69.[22]Kondo S,Takizawa K,Takahashi A,et al.A study on flammability limits of fuel mixtures[J].Journal of Hazardous Materials,2008,155(3):440-448.[23]Zlochower I A,Green G M.The limiting oxygen concentration and flammability limits of gases and gas mixtures[J].Journal of Loss Prevention in the Process Industries,2009,22(4):499-505.[24]Shebeko Y N,Fan W,Bolodian I A,et al.An analytical evaluation of flammability limits of gaseous mixtures of combustible-oxidizer-diluent[J].Fire Safety Journal,2002,37(6):549-568.[25]Kakutkina N A,Rychkov A D.Filtration gas combustion in an inhomogeneous porous medium[J].Combustion,Explosion and Shock Waves,2010,46(4):380-390.


[1]程方明,邓 军.一氧化碳影响二氧化碳惰化甲烷爆炸的实验研究[J].西安科技大学学报,2016,(03):315.[doi:10.13800/j.cnki.xakjdxxb.2016.0303]
 CHENG Fang-ming,DENG Jun.Experimental study on the influence of carbon monoxide on carbon dioxide-inerted methane explosion[J].Journal of Xi’an University of Science and Technology,2016,(05):315.[doi:10.13800/j.cnki.xakjdxxb.2016.0303]
 CHEN Xiao-kun,LI Hai-tao,WANG Yi-lin,et al.Dynamic response and reliability of coal mine rescue ball with gas explosion blast load[J].Journal of Xi’an University of Science and Technology,2017,(05):326.[doi:10.13800/j.cnki.xakjdxxb.2017.0304]
 LI Run-zhi,SI Rong-jun.Effect of gas concentration on the explosion pressure and pressure rise[J].Journal of Xi’an University of Science and Technology,2010,(05):29.
[5]王 莉,田水承.瓦斯爆炸3类危险源系统结构建模与分析[J].西安科技大学学报,2010,(06):651.
 WANG Li,TIAN Shui-cheng.Structure of three-type-hazard system in gas explosion based on ISM[J].Journal of Xi’an University of Science and Technology,2010,(05):651.
[6]田水承,张利华,王 莉.煤矿瓦斯爆炸3类危险源系统的SD[J].西安科技大学学报,2011,(06):689.
 TIAN Shui-cheng,ZHANG Li-hua,WANG Li.Research on three classes of hazards system of gas explosion based on SD[J].Journal of Xi’an University of Science and Technology,2011,(05):689.
[7]王 莉,李红霞,田 生,等.瓦斯爆炸3类危险源评价指标优化[J].西安科技大学学报,2011,(06):693.
 WANG Li,LI Hong-xia,TIAN Sheng,et al.Optimization for three types of gas explosion hazard evaluation index[J].Journal of Xi’an University of Science and Technology,2011,(05):693.


收稿日期:2019-01-28 责任编辑:杨泉林基金项目:国家自然科学基金(51504190); 国家重点研发计划项目(2018YFC0807900,2016YFC0800100); 陕西省国际科技合作与交流计划项目(2016KW-070); 中国博士后科学基金项目(2013M530430)通信作者:王秋红(1984-),女,陕西西安人,副教授,硕士生导师,E-mail:wangqiuhong1025@126.com
更新日期/Last Update: 2019-10-25