[1]刘志军,杨 栋,胡耀青,等.油页岩原位热解孔隙结构演化的低温氮吸附分析[J].西安科技大学学报,2018,(05):737-742.[doi:10.13800/j.cnki.xakjdxxb.2018.0507]
 LIU Zhi-jun,YANG Dong,HU Yao-qing,et al.Low temperature nitrogen adsorption analysis of pore structure evolution in in-situ pyrolysis of oil shale[J].Journal of Xi'an University of Science and Technology,2018,(05):737-742.[doi:10.13800/j.cnki.xakjdxxb.2018.0507]
点击复制

油页岩原位热解孔隙结构演化的低温氮吸附分析(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2018年05期
页码:
737-742
栏目:
出版日期:
2018-09-30

文章信息/Info

Title:
Low temperature nitrogen adsorption analysis of pore structure evolution in in-situ pyrolysis of oil shale
文章编号:
1672-9315(2018)05-0743-08
作者:
刘志军12杨 栋1胡耀青1邵继喜1
1.太原理工大学 采矿工艺研究所,山西 太原 030024; 2.黑龙江科技大学 黑龙江省煤矿深部开采地压控制与瓦斯治理重点实验室,黑龙江 哈尔滨 150022
Author(s):
LIU Zhi-jun12YANG Dong1HU Yao-qing1SHAO Ji-xi1
1.Mining Technology Institute,Taiyuan University of Technology,Taiyuan 030024,China; 2.Heilongjiang Ground Pressure and Gas Control in Deep Mining Key Laboratory,Heilongjiang University of Science and Technology,Harbin 150022,China
关键词:
矿业工程 油页岩 原位热解 孔径分布 低温氮吸附
Keywords:
mining engineering oil shale in-situ pyrolysis pore size distribution low-temperature nitrogen adsorption
分类号:
TD 83
DOI:
10.13800/j.cnki.xakjdxxb.2018.0507
文献标志码:
A
摘要:
孔隙结构是油页岩的一个重要特征,直接影响油页岩内的传热效率与油气流动行为。为分析油页岩孔隙结构在热解过程中的演化规律,采用热重分析与低温氮气吸附(LTNA)手段,定量分析了压力及不同热解终温下油页岩孔隙结构特征。结果表明:抚顺油页岩的有机质降解阶段为350~540 ℃,干酪根分解与沥青的二次分解在同一温度区间完成,没有明显的两阶段过程。以有机质热解起始温度350 ℃为界,孔隙结构与类型发生重大改变。低于该温度时以墨水瓶型孔为主,高于该温度时以狭缝型孔为主,有机质热解对油页岩孔隙类型的变化起控制作用。油页岩孔隙结构演化涉及复杂的物化过程,是有机质、热解产物与无机矿物共同作用的结果,有机质的热解使比表面积与孔体积产生大幅增加,研究结果可作为油页岩原位开采的有益参考。
Abstract:
Pore structure is an important characteristic of oil shale,which directly affects the heat transfer efficiency and the flow behavior of products in the oil shale.In order to analyze the evolution of pore structure of oil shale during pyrolysis,thermogravimetry and low-temperature nitrogen adsorption(LTNA)method were adopted to quantitatively analyze the pore structure characteristics of oil shale at pressure and different pyrolysis temperatures.The results show that:The stage of organic matter decomposition of oil shale in Fushun is 350~540 ℃, including decomposition of kerogen and secondary decomposition of bitumen.There is no obvious temperature difference between them.With the 350 ℃ of starting temperature of organic matter pyrolysis as a boundary,the pore structure and type undergo significant changes.Ink bottle-type pores dominated when T<350 ℃ and slit-type pores dominated when T>350 ℃,the pyrolysis of organic matter plays a controlling role in the change of pore types.The evolution of pore structure of oil shale involves complicated process of physicochemical,which is the result of organic matter,pyrolysis products and inorganic minerals.The pyrolysis of organic matter greatly increases the specific surface area and pore volume,the results can be used as a useful reference for the in-situ exploitation of oil shale.

参考文献/References:

[1] World Energy Council.world energy focus annual 2017[DB/OL].https://www.worldenergy.org/publications/2017/world-energy-focus-2017/(10 January 2018). [2]World Energy Council.world energy resources 2016[DB/OL].https://www.worldenergy.org/publications/2016/world-energy-resources-2016/(10 January 2018). [3]Dyni J R.Geology and resources of some world oil-shale deposits[J].Oil Shale,2003,20(3):193-252. [4]Altun N E,Hicyilmaz C,Hwang J,et al.Oil shales in the world and Turkey; reserves,current situation and future prospects:a review[J].Oil Shale,2006,23(3):211-227. [5]Cleveland C J,O'connor P A.Energy return on investment(EROI)of oil shale[J].Sustainability,2011,3(12):2307-2322. [6]刘招君,柳 蓉.中国油页岩特征及开发利用前景分析[J].地学前缘,2005,12(3):315-323. LIU Zhao-jun,LIU Rong.Oil shale resource state and evaluating system[J].Earth Science Frontiers,2005,12(3):315-323 [7]畅志兵.基于油页岩组成结构的热解特性研究[D].北京:中国矿业大学(北京),2017. CHANG Zhi-bing.Study on the pyrolysis characteristics of oil shale based on its composition and structure[D].Beijing:China University of Mining and Technology(Beijing),2017. [8]王 擎,张凡志,刘洪鹏,等.油页岩气体热载体干馏过程模拟[J].化工学报,2012,63(2):612-617. WANG Qing,ZHANG Fan-zhi,LIU Hong-peng,et al.Simulation of dry distillation process of oil shale in heat gas[J].CIESC Journal,2012,63(2):612-617. [9]Kang Z,Yang D,Zhao Y,et al.Thermal cracking and corresponding permeability of Fushun oil shale[J].Oil Shale,2011,28(2):273-283. [10]Eseme E,Urai J L,Krooss B M,et al.Review of mechanical properties of oil shales:implications for exploitation and basin modelling[J].Oil Shale,2007,24(2):159-174. [11]Bai F,Sun Y,Liu Y,et al.Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches[J].Fuel,2017,187:1-8. [12]Nottenburg R N,Rajeshwar K,Rosenvold R J,et al.Temperature and stress dependence of electrical and mechanical properties of Green River oil shale[J].Fuel,1979,58(2):144-148. [13]Allan A M,Clark A C,Vanorio T,et al.On the evolution of the elastic properties of organic-rich shale upon pyrolysis-induced thermal maturation[J].Geophysics,2015,81(3):D271-D289. [14]Kang Z,Zhao J,Yang D,et al.Study of the evolution of micron-scale pore structure in oil shale at different temperatures[J].Oil Shale,2017,34(1):42. [15]赵 静,冯增朝,杨 栋,等.CT实验条件下油页岩内部孔裂隙分布特征[J].辽宁工程技术大学学报:自然科学版,2013(8):1044-1049. ZHAO Jing,FENG Zeng-chao,YANG Dong,et al.Study on distribution characteristics of pores and fissures inside oil shale under the CT experiment[J].Journal of Liaoning Technical University:Natural Science Edition,2013(8):1044-1049. [16]杨 栋,康志勤,赵 静,等.油页岩高温CT实验研究[J].太原理工大学学报,2011,42(3):255-257. YANG Dong,KANG Zhi-qin,ZHAO Jing,et al.CT experiment research of oil shale under high temperature[J].Journal of Taiyuan University of Technical,2011,42(3):255-257. [17]Yang L,Yang D,Zhao J,et al.Changes of oil shale pore structure and permeability at different temperatures[J].Oil Shale,2016,33(2):101-110. [18]Han X,Jiang X,Yan J,et al.Effects of retorting factors on combustion properties of shale char.2.pore structure[J].Energy and Fuels,2011,25(1):97-102. [19]Wang Q,Jiao G,Liu H,et al.Variation of the pore structure during microwave pyrolysis of oil shale[J].Oil Shale,2010,27(2):135-146. [20]孙佰仲,王 擎,李少华,等.桦甸油页岩及半焦孔结构的特性分析[J].动力工程学报,2008,28(1):163-167. SUN Bai-zhong,WANG Qing,LI Shao-hua,et al.Analysis of specific area and porous structure of oil shale and semi-coke[J].Journal of Power Engineering,2008,28(1):163-167. [21]Geng Y,Liang W,Liu J,et al.Evolution of pore and fracture structure of oil shale under high temperature and high pressure[J].Energy and Fuels,2017,31(10):10404-10413. [22]Jaber J O,Probert S D.Pyrolysis and gasification kinetics of Jordanian oil-shales[J].Applied Energy,1999,63(4):269-286. [23]Yan J,Jiang X,Han X.Study on the characteristics of the oil shale and shale char mixture pyrolysis[J].Energy and Fuels,2009,23(12):5792-5797. [24]Rouquerol J,Avnir D,Everett D H,et al.Guidelines for the characterization of porous solids[J].Pure and Applied Chemistry,1994,66(8):1739-1758. [25]曹涛涛,宋之光,王思波,等.不同页岩及干酪根比表面积和孔隙结构的比较研究[J].中国科学:地球科学,2015,45(2):139-151. CAO Tao-tao,SONG Zhi-guang,WANG Si-bo,et al.A comparative study of the specific surface area and pore structure of different shales and their kerogens[J].Science China:Earth Sciences,2015,45(2):139-151. [26]厚刚福,董清水,于文斌,等.抚顺盆地油页岩地质特征及其成矿过程[J].吉林大学学报,2006,36(6):991-995. HOU Gang-fu,DONG Qing-shui,YU Wen-bin,et al. Geological characteristics and the ore forming process of the oil shale in Fushun Basin[J].Journal of Jilin University,2006,36(6):991-995. [27]白奉田.局部化学法热解油页岩的理论与室内试验研究[D].长春:吉林大学,2015. BAI Feng-tian.Theoretical and experimental research of oil shale pyrolysis triggered by topochemical heat[D].Changchun:Jilin University,2015.

相似文献/References:

[1]李玉宏,张 文,武富礼,等.陕西省铜川-黄陵地区延长组长7油页岩特征及资源潜力[J].西安科技大学学报,2016,(05):647.[doi:10.13800/j.cnki.xakjdxxb.2016.0507]
 LI Yu-hong,ZHANG Wen,WU Fu-li,et al.Characteristics and resource potential of oil shale in Chang 7 of Yanchang Formation in Tongchuan- Huangling area,Shaanxi provinces[J].Journal of Xi'an University of Science and Technology,2016,(05):647.[doi:10.13800/j.cnki.xakjdxxb.2016.0507]
[2]臧东升,王嗣敏,柴立满,等.层次分析法在建昌盆地油页岩勘查有利区优选中的应用[J].西安科技大学学报,2014,(02):180.
 ZANG Dong-sheng,WANG Si-min,CHAI Li-man,et al.AHP applation to oil shale exploration optimization in Jianchang Basin[J].Journal of Xi'an University of Science and Technology,2014,(05):180.
[3]程甘露,田继军,王长江,等.准噶尔盆地南缘油页岩特征及控矿条件[J].西安科技大学学报,2014,(05):558.[doi:10.13800/j.cnki.xakjdxxb.2014.0509]
 CHENG Gan-lu,TIAN Ji-jun,WANG Chang-jiang,et al.Characteristics and ore-controlling condition of oil shale in Southern margin area of Junggar Basin[J].Journal of Xi'an University of Science and Technology,2014,(05):558.[doi:10.13800/j.cnki.xakjdxxb.2014.0509]
[4]王小多,冀显坤,李春霞,等.可控源音频电磁测深在油页岩勘查中的应用[J].西安科技大学学报,2014,(05):564.[doi:10.13800/j.cnki.xakjdxxb.2014.0510]
 WANG Xiao-duo,JI Xian-kun,LI Chun-xia,et al.Application of controlled source audio magnetotelluric sounding in oil shale exploration[J].Journal of Xi'an University of Science and Technology,2014,(05):564.[doi:10.13800/j.cnki.xakjdxxb.2014.0510]
[5]冯 烁,田继军,孙铭赫,等.准噶尔盆地南缘芦草沟组沉积演化及其对油页岩分布的控制[J].西安科技大学学报,2015,(04):436.
 FENG Shuo,TIAN Ji-jun,SUN Ming-he,et al.Distribution of the oil shale by sedimentary evolution in the Lucaogou Formation in southern margin of Junger Basin[J].Journal of Xi'an University of Science and Technology,2015,(05):436.
[6]张 杰,杨 涛,索永录,等.基于耦合评价的安山煤矿顶板突水预测模型研究[J].西安科技大学学报,2018,(04):569.[doi:10.13800/j.cnki.xakjdxxb.2018.0408 ]
 ZHANG Jie,YANG Tao,SUO Yong-lu,et al.Forecast model for roof water inrush in Anshan coal mine based on coupling evaluation[J].Journal of Xi'an University of Science and Technology,2018,(05):569.[doi:10.13800/j.cnki.xakjdxxb.2018.0408 ]
[7]李谦益.改进可拓层次法在煤层顶板稳定性评价中的应用[J].西安科技大学学报,2018,(04):643.[doi:10.13800/j.cnki.xakjdxxb.2018.0418 ]
 LI Qian-yi.Application of EAHP in stability evaluation of coal seam roof[J].Journal of Xi'an University of Science and Technology,2018,(05):643.[doi:10.13800/j.cnki.xakjdxxb.2018.0418 ]
[8]郭爱华.煤层气井潜在酸联合加砂压裂增产机理及应用[J].西安科技大学学报,2018,(04):650.[doi:10.13800/j.cnki.xakjdxxb.2018.0419 ]
 GUO Ai-hua.Mechanism and application of potential acid combined sand and fracturing in CBM wells[J].Journal of Xi'an University of Science and Technology,2018,(05):650.[doi:10.13800/j.cnki.xakjdxxb.2018.0419 ]
[9]王亚超,袁 泉,肖 旸,等.水分对白皎无烟煤氧化过程放热特性的影响[J].西安科技大学学报,2018,(05):721.[doi:10.13800/j.cnki.xakjdxxb.2018.0505]
 WANG Ya-chao,YUAN Quan,XIAO Yang,et al.Effect of moisture on exothermic characteristics of oxidation process of Baijiao anthracite[J].Journal of Xi'an University of Science and Technology,2018,(05):721.[doi:10.13800/j.cnki.xakjdxxb.2018.0505]
[10]柴 敬,杜文刚,袁 强,等.物理模型试验光纤传感技术测试方法分析[J].西安科技大学学报,2018,(05):728.[doi:10.13800/j.cnki.xakjdxxb.2018.0506]
 CHAI Jing,DU Wen-gang,YUAN Qiang,et al.Analysis of test method for physical model test based on optical fiber sensing technology detection[J].Journal of Xi'an University of Science and Technology,2018,(05):728.[doi:10.13800/j.cnki.xakjdxxb.2018.0506]

备注/Memo

备注/Memo:
收稿日期:2018-01-18 责任编辑:刘 洁
基金项目:国家自然科学基金(51574173,51574115,51774121)
更新日期/Last Update: 2018-09-30