[1]张 磊,刘小明,来兴平,等.基于BP神经网络的急倾斜煤层耦合致裂方案优化[J].西安科技大学学报,2018,(03):367-374.[doi:10.13800/j.cnki.xakjdxxb.2018.0304]
 ZHANG Lei,LIU Xiao-ming,LAI Xing-ping,et al.Optimization of coupled fracturing scheme for steeply inclined coal seam based on BP neural network[J].Journal of Xi'an University of Science and Technology,2018,(03):367-374.[doi:10.13800/j.cnki.xakjdxxb.2018.0304]
点击复制

基于BP神经网络的急倾斜煤层耦合致裂方案优化(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2018年03期
页码:
367-374
栏目:
出版日期:
2018-05-15

文章信息/Info

Title:
Optimization of coupled fracturing scheme for steeply inclined coal seam based on BP neural network
文章编号:
1672-9315(2018)03-0367-08
作者:
张 磊12刘小明12来兴平12高语蔚3崔 峰12杨毅然12
1.西安科技大学 能源学院,陕西 西安 710054; 2.西安科技大学 西部矿井开采及灾害防治重点实验室,陕西 西安 710054; 3.西安科技大学 计算机科学与技术学院,陕西 西安 710054
Author(s):
ZHANG Lei 12LIU Xiao-ming12LAI Xing-ping12GAO Yu-wei3CUI Feng12YANG Yi-ran12
(1.College of Energy Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 2.Key Laboratory of Western Mine Exploitation and HazardPrevention,Ministry of Education,Xi'an University of Science and Technology,Xi'an 710054,China; 3.College of Computer Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)
关键词:
急倾斜煤层 BP神经网络 耦合致裂 裂化率 方案优化
Keywords:
steeply inclined coal seam BP neural network coupled crack cracking rate scheme optimization
分类号:
TD 32
DOI:
10.13800/j.cnki.xakjdxxb.2018.0304
文献标志码:
A
摘要:
为准确优化急倾斜煤层顶煤耦合致裂方法,根据碱沟煤矿+495水平B1+2工作面开采技术条件,梳理制约顶煤冒放性的7个主要因素; 构建了预测顶煤冒放性的BP神经网络模型,并对不同的耦合致裂方案效果进行了预测与分析。结果表明,随顶煤裂化率增加,顶煤冒放性逐步提高,当劣化率大于43%时,弱化后顶煤达到Ⅰ类冒放性标准。考虑经济和实施环境等,选定注水压力为5 MPa,炸药单耗为0.3 kg/m3为最优方案参数。优化方案实施后,碱沟煤矿顶煤冒放性由第Ⅳ类向第Ⅰ类转化,顶煤冒放性与回采率大幅提升,为安全高效开采提供了理论依据。
Abstract:
In order to accurately optimize the coupling cracking method for the roof of steeply inclined coal seams,seven factors that restrict top coal caving are made clear according to the mining conditions of B1+2 working face at +495 level in Jiangou Coal Mine.A BP neural network model for predicting top coal caving property is constructed,and Matlab was adopted to train the network model to obtain the optimized model.The optimized model was then used to predict and analyze the effect of coupling cracking scheme when various weakening parameters was applied.Results show that the caving ability of top coal increases gradually with the increase of cracking rate.When the deterioration rate is greater than 43%,the top coal would reach the class I caving level after weakening.Considered the economic and implementation environment,we selected 5 MPa as water injection pressure and 0.3 kg/m3 as the unit explosive consumption for the optimal parameters.After the implementation of the optimized scheme,the caving property of the top coal in the coal mine is transformed from class Ⅳ level to class Ⅰ level,and the caving and recovery rate of top coal is greatly improved,which provides a theoretical basis for the safe and efficient mining of steeply inclined coal seams.

参考文献/References:

[1] 康建兵.BP神经网络在顶煤冒放性评估中的应用[J].煤炭工程,2011(3):57-59. KANG Jian-bing.Application of BP neural network to evaluation of top coal cavability[J].Coal Engineering,2011(3):57-59.
[2]索永录.坚硬顶煤弱化爆破的宏观损伤破坏程度研究[J].岩土力学,2005(6):893-895. SUO Yong-lu.Study for macro-damage degree of weakening blast in hard top-coal[J].Rock and Soil Mechanics,2005(6):893-895.
[3]Xie H,Zhou H W.Application of fractal theory to top-coal caving[J].Chaos Solitons and Fractals,2006,24(7):797-807.
[4]崔 峰,来兴平,陈建强,等.急倾斜特厚煤岩体耦合致裂应用研究[J].岩石力学与工程学报,2015,34(8):1569-1580. CUI Feng,LAI Xing-ping,CHEN Jian-qiang,et al.Application of coupled-cracking technology in inclined and extra-thick coal layer[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(8):1569-1580.
[5]马文强,王同旭,马 凯.高韧性煤层综放开采难冒放机理及弱化效果研究[J].煤炭科学技术,2015,43(10):56-60,143. MA Wen-qiang,WANG Tong-xu,MA Kai.Study on difficult falling mechanism and weakening effect of fully-mechanized top coal caving mining in high ductibility seam[J].Coal Science and Technology,2015,43(10):56-60,143.
[6]李振华,许延春,李龙飞,等.基于BP神经网络的导水裂隙带高度预测[J].采矿与安全工程学报,2015,32(6):905-910. LI Zhen-hua,XU Yan-chun,LI Long-fei,et al.Forecast of the height of water flowing fractured zonebased on BP neural networks[J].Journal of Mining and Safety Engineering,2015,32(6):905-910.
[7]Klose C D,Loew S,Giese R,et al.Spatial predictions of geological rock mass properties based on in-situ interpretations of multi-dimensional seismic data[J].Engineering Geology,2007,93:99-116.
[8]刘子亮,于妍宁,王雪松,等.基于神经网络的爆破块度预测[J].辽宁科技大学学报,2016,39(4):303-306,310. LIU Zi-liang,YU Yan-ning,WANG Xue-song,et al.Prediction of blasting fragmentation based on neural network model[J].Journal of University of Science and Technology Liaoning,2016,39(4):303-306,310.
[9]WEI Jin-ping,LI Zhong-hua,SANG Pei-miao,et al.Control effect of fracture on hard coal cracking in a full mechanized longwall top call caving face[J].Journal of Coal Science and Engineering,2009,15(1):38-40.
[10]夏小刚,黄庆享.急倾斜煤层顶煤可放性因素分析[J].湖南科技大学学报,2007,22(1):5-8. XIA Xiao-gang,HUANG Qing-xiang.Analses of the factors on top coal caving capability in steepcoal[J].Journal of Hunan University of Science and Technology,2007,22(1):5-8.
[11]王卫军,朱川曲,熊仁钦.急倾斜煤层顶煤可放性识别的神经网络模型[J].煤炭学报,2000,25(1):38-41. WANG Wei-jun,ZHU Chuan-qu,XIONG Ren-qin.Neural network model for identification of top coal caving in steep seam[J].Journal of China Coal Society,2000,25(1):38-41.
[12]朱川曲,缪协兴.急倾斜煤层顶煤可放性评价模型及应用[J].煤炭学报,2002,27(2):134-138. ZHU Chuan-qu,LIAO Xie-xing.Evaluation model of top coal caving in steep seam and its application[J].Journal of China Coal Society,2002,27(2):134-138.
[13]范世民,胡学军.放顶煤开采顶煤冒放性分类及其在潞安矿区的应用[J].煤炭学报,2005,30(2):177-181. FAN Shi-min,HU Xue-jun.The classification of top coal cavability and its application in Lu'an Mine Area[J].Journal of China Coal Society,2005,30(2):177-181.
[14]李 云,刘 霁.神经网络与主元分析在采矿工程中的应用[J].中南林业科技大学学报,2010,30(6):140-146. LI Yun,LIU Ji.Applization of combination of neural networks and principal component analysis in mining engineering[J].Journal of Central South University of Forestry and Technology,2010,30(6):140-146.
[15]黄炳香,程庆迎,刘长友,等.煤岩体水力致裂理论及其工艺技术框架[J].采矿与安全工程学报,2011,28(2):167-173. HUANG Bing-xiang,CHEN Qing-ying,LIU Chang-you,et al.Hydraulic fracturing theory of coal rock mass and its technical framework[J].Journal of Mining and Safety Engineering,2011,28(2):167-173.
[16]谢和平,王家臣,陈忠辉,等.坚硬厚煤层综放开采爆破破碎顶煤技术研究[J].煤炭学报,1999,24(4):350-354. XIE He-ping,WANG Jia-chen,CHEN Zhong-hui,et al.Study on top-coal blasting technique of full-mechanized caving in the hard thick coal seam[J].Journal of China Coal Society,1999,24(4):350-354.
[17]刘 健,刘泽功,高 魁,等.深孔爆破在综放开采坚硬顶煤预先弱化和瓦斯抽采中的应用[J].岩石力学与工程学报,2014,33(S1):3361-3367. LIU Jian,LIU Ze-gong,GAO Kui,et al.Application of deep borehole blasting to top-coal pre-weakening and gas extraction in fully mechanized caving[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(S1):3361-3367.

相似文献/References:

[1]王运森,郑贵平,曹卫东,等.基于BP神经网络的Mathews图表法分区调整[J].西安科技大学学报,2016,(01):116.
 WANG Yun-sen,Zheng Gui-ping,CAO Wei-dong,et al.Adjustment of Mathews' stability graph method based on BP neural network[J].Journal of Xi'an University of Science and Technology,2016,(03):116.
[2]来兴平,孙 欢,蔡 明,等.急斜煤层浅转深综放开采煤岩动力灾害诱发机理[J].西安科技大学学报,2017,(03):305.[doi:10.13800/j.cnki.xakjdxxb.2017.0301]
 LAI Xing-ping,SUN Huan,CAI Ming,et al.Mechanism of dynamic hazards due to coal and rock mass instability in extremely steep coal seams with the deepening mining[J].Journal of Xi'an University of Science and Technology,2017,(03):305.[doi:10.13800/j.cnki.xakjdxxb.2017.0301]
[3]李树刚,马彦阳,林海飞,等.基于因子分析法的瓦斯涌出量预测指标选取[J].西安科技大学学报,2017,(04):461.[doi:10.13800/j.cnki.xakjdxxb.2017.0402]
 LI Shu-gang,MA Yan-yang,LIN Hai-fei,et al.Selection of gas emission prediction index based on factor analysis[J].Journal of Xi'an University of Science and Technology,2017,(03):461.[doi:10.13800/j.cnki.xakjdxxb.2017.0402]
[4]来兴平,伍永平,张 坤,等.多场耦合下急斜煤层开采三维物理模拟(2)[J].西安科技大学学报,2009,(06):654.
 LAI Xing-ping,WU Yong-ping,ZHANG Kun,et al.Three dimensional physical simulation for top-coal-mining of steep seam under multi-variable-field coupling effect(2)[J].Journal of Xi'an University of Science and Technology,2009,(03):654.
[5]张强骅,姚 锐,邓伟妮,等.PM10污染及BP神经网络气象预测[J].西安科技大学学报,2010,(01):43.
 ZHANG Qiang-hua,YAO Rui,DENG Wei-ni,et al.pollution and its BP neural network forecast model[J].Journal of Xi'an University of Science and Technology,2010,(03):43.
[6]郭秉超,漆 涛,王宁波,等.急倾斜特厚煤层综放开采工作面水患防治[J].西安科技大学学报,2010,(02):136.
 GUO Bing-chao,QI Tao,WANG Ning-bo,et al.ater prevention of full-mechanical top coal caving workings of heavy steep and thick[J].Journal of Xi'an University of Science and Technology,2010,(03):136.
[7]崔 峰,来兴平,曹建涛,等.急倾斜综放破碎顶煤流动规律数值模拟[J].西安科技大学学报,2010,(03):255.
 CUI Feng,LAI Xing-ping,CAO Jian-tao,et al.Numerical simulation of broken top coal flow law by mechanized caving in steep[J].Journal of Xi'an University of Science and Technology,2010,(03):255.
[8]唐胜利,唐皓,郭辉.基于BP神经网络的空洞型采空区稳定性评价研究[J].西安科技大学学报,2012,(02):234.
 TANG Sheng-li,TANG Hao,GUO Hui.Stability evaluation of empty mine goaf based on BP neural network[J].Journal of Xi'an University of Science and Technology,2012,(03):234.
[9]来兴平,王青松,蒋丽萍,等.急倾斜煤层采空区结构特征GPR探测[J].西安科技大学学报,2012,(05):543.
 LAI Xing-ping,WANG Qing-song,JIANG Li-ping,et al.Structure characteristics of mined-out area in steep coal seams based on GPR detection[J].Journal of Xi'an University of Science and Technology,2012,(03):543.
[10]蒋丽萍,张新战,蓝海东,等.乌东煤矿45#急倾斜煤层采空区与水患探测分析[J].西安科技大学学报,2012,(05):556.
 JIANG Li-ping,ZHANG Xin-zhan,LAN Hai-dong,et al.Detection and analysis of goaf and flood in Wudong coal mine with 45# steep coal seam[J].Journal of Xi'an University of Science and Technology,2012,(03):556.

备注/Memo

备注/Memo:
收稿日期:2017-06-15 责任编辑:高 佳
基金项目:国家自然科学基金(51504184,U1361206); 国家重点基础研究发展计划(973)项目(2015CB251602); 陕西省博士后科研项目(2016BSHEDZZ29)
通信作者:来兴平(1971- ),男,宁夏平罗人,教授,博士生导师,E-mail:laixp@xust.edu.cn
更新日期/Last Update: 2018-06-30