[1]倪守斌,程武山.粒子群算法优化BP神经网络的变载荷自平衡控制系统[J].西安科技大学学报,2017,(06):927-931.[doi:10.13800/j.cnki.xakjdxxb.2017.0624 ]
 NI Shou-bin,CHENG Wu-shan.Variable load self-balancing control system basedon PSO-optimized BP neural network[J].Journal of Xi'an University of Science and Technology,2017,(06):927-931.[doi:10.13800/j.cnki.xakjdxxb.2017.0624 ]
点击复制

粒子群算法优化BP神经网络的变载荷自平衡控制系统(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2017年06期
页码:
927-931
栏目:
出版日期:
2017-11-30

文章信息/Info

Title:
Variable load self-balancing control system basedon PSO-optimized BP neural network
文章编号:
1672-9315(2017)06-0927-05
作者:
倪守斌程武山
上海工程技术大学 机械工程学院,上海 201620
Author(s):
NI Shou-binCHENG Wu-shan
(School of Mechanical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
关键词:
时变负载 自平衡 粒子群算法 PID神经网络
Keywords:
time-varying load self-balancing particle swarm optimization PID neural network
分类号:
TP 18
DOI:
10.13800/j.cnki.xakjdxxb.2017.0624
文献标志码:
A
摘要:
为解决常规PID控制难以在具有时变负载的自平衡系统中实时、精确调节负载的变化,在BP神经网络基础上,利用粒子群算法(PSO)优化BP神经网络,将神经网络的收敛速度进一步提高,并将算法应用到二轮平衡车控制系统中,对二轮平衡车进行动力学建模,介绍系统的结构、原理与实验方法,搭建二轮平衡车实验平台进行了施加突变负载情况下的试验验证。利用二轮平衡车实验平台车身上的姿态传感器得到车体倾斜输出角度,对比施加突变负载前后以及神经网络优化前后的车体倾斜输出角度变化。结果表明:粒子群算法(PSO)优化BP神经网络技术能够满足变负载二轮自平衡车控制的要求,实现了自平衡车的动态自平衡,提高了抗干扰能力,验证了优化算法在自平衡、抗外部干扰和缩短调整时间上的优势。
Abstract:
In order to solve the difficulty in conventional PID control with time-varying load balance system in real-time and precise adjustment of the load changes,on the base of BP neural network and using particle swarm algorithm(PSO)optimized BP neural network,the convergence speed of neural network was improved,and the algorithm was applied to the two-wheel balance vehicle control system.A dynamic model of two-wheel balance vehicle was established.We introduce the structure,principle and experimental method of the system,build the experimental platform for the two-wheel balance vehicle on the test case of mutation load,get the output angle of tilt body posture sensor using two-wheel balance vehicle experimental platform on the vehicle body,contrast output tilt angle changes before and after applied load and neural network optimization.The test results shows that the particle swarm algorithm(PSO)-optimized BP neural network technology meets the varying load in the two wheel self-balancing vehicle control,the dynamic self-balancing of the self-balancing vehicle is realized,and the anti-interference capability is improved.The advantages of the optimized algorithm in self-balancing,anti external interference and shortening the adjustment time are verified.

参考文献/References:

[1] 杨 莘,刘海涛.基于STM32的两轮自平衡小车[J].数字技术与应用,2014(5):151-152. YANG Shen,LIU Hai-tao.Two wheeled self balancing vehicle based on STM32[J].Digital technology and Applications,2014(5):151-152.
[2] 林 枫,蔡延光.双轮自平衡车的双闭环式PID控制系统设计与实现[J].工业控制计算机,2017(6):73-75. LIN Feng,CAI Yan-guang.Design and implementation of double closed loop PID control system for two wheeled self balancing vehicle[J].Industrial Control Computer,2017(6):73-75.
[3] 王俊,孟国营,史 林.带式输送机变载荷起动动力学仿真研究[J].起重运输机械,2008(12):75-78. WANG Jun,MENG Guo-ying,SHI Lin.Dynamic simulation study on variable load starting of belt conveyor[J].Hoisting and Conveying Machinery,2008(12):75-78.
[4] 郭 珂,伞 冶,朱 奕.基于PSO-BP神经网络的PID控制器参数优化方法[J].电子设计工程,2012(4):63-66. GUO Ke,SAN Ye,ZHU Yi.Parameter optimization method of PID controller based on PSO-BP neural network[J].Electronic Design Engineering,2012(4):63-66.
[5]杨兴明,段 举.两轮自平衡车的自适应模糊滑模控制[J].合肥工业大学学报:自然科学版,2016,39(2):184-189. YANG Xing-ming,DUAN Ju.Adaptive fuzzy sliding mode control for two wheeled self balancing vehicle[J].Journal of Hefei University of Technology:Natural Science Editon,2016,39(2):184-189.
[6] 汪圣祥,金朝永.基于BP神经网络的PID改进和研究[J].湖南理工学院学报:自然科学版,2017(1):26-31. WANG Sheng-xiang,JIN Chao-yong.Improvement and research of PID based on BP neural network[J].Journal of Hunan Institute of Science and Technology:Natural Science Edition,2017(1):26-31.
[7] 高正中,龚群英,宋森森.基于STM32的智能平衡车控制系统设计[J].现代电子技术,2016(14):46-48. GAO Zheng-zhong,GONG Qun-ying,SONG Sen-sen.Design of intelligent balance vehicle Control system based on STM32[J].Modern Electronic Teachnology,2016(14):46-48.
[8]刘淳安.解约束优化问题的新PSO算法[J].西安科技大学学报,2008,28(3):589-593. LIU Chun-an.A new PSO algorithm for the optimization problem of cancellation bundles[J].Journal of Xi'an University of Science and Technology,2008,28(3):589-593.
[9] 赖义汉,王 凯.基于MPU6050的双轮平衡车控制系统设计[J].河南工程学院学报:自然科学版,2014(1):53-57. LAI Yi-han,WANG Kai.Design of two wheel balancing vehicle control system based on MPU6050[J].Journal of Henan Institute of Engineering:Natural Science Edition,2014(1):53-57.
[10]何东健,刘忠超,范灵燕.基于MATLAB的PID控制器参数整定及仿真[J].西安科技大学学报,2006,26(4):511-514,523. HE Dong-jian,LIU Zhong-chao,FAN Ling-yan.Parameter tuning and simulation of PID controller based on MATLAB[J].Journal of Xi'an University of Science and Technology,2006,26(4):511-514,523.

备注/Memo

备注/Memo:
收稿日期:2017-08-10 责任编辑:刘 洁
通讯作者:倪守斌(1990-),男,山东日照人,硕士研究生,E-mail:171674117@qq.com
更新日期/Last Update: 2017-12-11