[1]王星东,段智永,王 成,等.物理模型结合SVM的格陵兰岛冰盖冻融探测[J].西安科技大学学报,2017,(06):912-918.[doi:10.13800/j.cnki.xakjdxxb.2017.0622 ]
 WANG Xing-dong,DUAN Zhi-yong,WANG Cheng,et al.Ice-sheet freeze-thaw detection based on physical model combined with SVM in Greenland[J].Journal of Xi'an University of Science and Technology,2017,(06):912-918.[doi:10.13800/j.cnki.xakjdxxb.2017.0622 ]
点击复制

物理模型结合SVM的格陵兰岛冰盖冻融探测(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2017年06期
页码:
912-918
栏目:
出版日期:
2017-11-30

文章信息/Info

Title:
Ice-sheet freeze-thaw detection based on physical model combined with SVM in Greenland
文章编号:
1672-9315(2017)06-0912-07
作者:
王星东12段智永1王 成2李新广1
1.河南工业大学 信息科学与工程学院,河南 郑州 450001; 2.中国科学院 遥感与数字地球研究所,北京 100094
Author(s):
WANG Xing-dong12DUAN Zhi-yong1WANG Cheng2LI Xin-guang1
(1.College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China; 2.Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China)
关键词:
格陵兰岛 冰盖冻融探测 微波辐射计 物理模型
Keywords:
Greenland ice-sheet freeze-thaw detection microwave radiometer physical model
分类号:
P 237
DOI:
10.13800/j.cnki.xakjdxxb.2017.0622
文献标志码:
A
摘要:
为提高格陵兰岛冰盖冻融探测精度,在微波辐射计简单冰盖冻融物理模型和SVM(支持向量机)分类方法的基础上,提出了物理模型结合SVM的格陵兰岛冰盖冻融探测新方法,即对微波辐射计简单物理模型得到的冰盖冻融探测结果进行SVM分类,得到格陵兰岛冰盖冻融分布信息。为验证所提方法的可行性与合理性,基于格陵兰岛2013年8月1日的冻融结果和2013年的融化开始时间、持续时间与传统简单物理模型结果进行对比,结果表明:文中所提出的方法得到的格陵兰岛冰盖冻融探测结果更接近于实际的冰盖冻融分布。物理模型结合SVM的冰盖冻融探测方法是有效的、可行的且能有较高的探测精度。
Abstract:
In order to improve snowmelt detection accuracy of Greenland ice sheet,a new snowmelt method is proposed for Greenland ice sheet,which combines physical model with SVM(Support Vector Machine)based on simple snowmelt physical model and SVM classification method for microwave radiometer,that is,the data gotten by the simple snowmelt physical model of the microwave radiometer is classified by SVM model to obtain the information of the snowmelt distribution in Greenland.In order to verify the feasibility and rationality of the proposed method,the results were compared with the traditional simple physical model in Greenland on August 1,2013 and in 2013.The results show that the proposed method is closer to the actual snowmelt distribution.And the proposed method is feasible,effective with higher precision.

参考文献/References:

[1] Wang L.Deriving spatially varying thresholds for real-time snowmelt detection from space-borne passive microwave observations[J].Remote Sensing Letters,2012,3(4):305-313.
[2] 曹梅盛,李 新,陈贤章,等.冰冻圈遥感[M].北京:科学出版社,2006. CAO Mei-sheng,LI Xin,CHEN Xian-zhang,et al.Remote sensing cryosphere[M].Beijing:Science Press,2006.
[3] Liang Lei,GUO Hua-dong,LI Xin-wu.Automated ice-sheet snowmelt detection using microwave radiometer measurements[J].Polar Research,2013,32(13):89-99.
[4] 程 晓.基于星载微波遥感数据的南极冰盖信息提取与变化监测研究[D].北京:中国科学院遥感应用研究所,2004. CHENG Xiao.A study on monitoring Antarctic ice sheet using space-borne microwave remote sensing data[D].Beijing:Institute of Remote Sensing Applications,Chinese Academy of Sciences,2004.
[5] Joshi M,Merry C J,Jezek K C,et al.An edge detection technique to estimate melt duration,season and melt extent on the Greenland ice sheet using passive microwave data[J].Geophysical Research Letters,2001,28(18):3 497-3 500.
[6] Mote T L,Anderson M R,Kuivinen K C,et al.Passive microwave-derived spatial and temporal variations of summer melt on the Greenland ice sheet[J].Annals of Glaciology,1993,17(17):233-238.
[7] Zwally H J,Fiegles S.Extent and duration of Antarctic surface melting[J].Journal of Glaciology,1994,136(40):463-476.
[8] Steffen K,Abdalati W,Stroeve J.Climate sensitivity studies of the Greenland ice sheet using satellite AVHRR,SMMR,SSM/I and in situ data[J].Meteorology and Atmospheric Physics,1993,51(3-4):239-258.
[9] Abdalati W,Steffen K.Passive microwave-derived snow melt regions on the Greenland ice sheet[J].Geophysical Research Letters,1995,22(7):787-790.
[10]Steffen K,Abdalati W,Stroeve J.Climate sensitivity studies of the Greenland ice sheet using satellite AVHRR,SMMR,SSM/I and in situ data[J].Meteorology and Atmospheric Physics,1993,51(3-4):239-258.
[11]Ramage J M,Isacks B L.Interannual variations of snowmelt and refreeze timing on southeast-Alaskan icefields,USA[J].Journal of Glaciology,2003,49(164):102-116.
[12]Torinesi O,Fily M,Genthon C.Variability and trends of the summer melt period of Antarctic Ice margins since 1980 from microwave sensors[J].Journal of Climate,2003,16(7):1 047-1 060.
[13]黄新宇,冯 筠.冰雪微波遥感研究进展[J].遥感技术与应用,2004,19(6):533-536. HUANG Xin-yu,FENG Yun.The development of study on the snow ice using microwave remote sensing data[J].Remote Sensing Technology and Application,2004,19(6):533-536.
[14]程 晓,张艳梅,李 震,等.南极地区 SSM/I 微波辐射计亮温时间序列分析[J].水科学进展,2005,16(2):268-273. CHENG Xiao,ZHANG Yan-mei,LI Zhen,et al.Time series analysis of SSM/I micro wave radiometer brightness temperature in Antarctica[J].Advances in Water Science,2005,16(2):268-273.
[15]Liu H,Wang L,Jezek K.Wavelet-transform based edge detection approach to derivation of snowmelt onset,end and duration from satellite passive microwave measurements[J].International Journal of Remote Sensing,2005,26(21):4 639-4 660.
[16]Liu H,Wang L,Jezek K C.Automated delineation of dry and melt snow zones in Antarctica using active and passive microwave observations from space[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(8):2 152-2 163.
[17]Ashcraft I S,Long D G.Comparison of methods for melt detection over Greenland using active and passive microwave measurements[J].International Journal of Remote Sensing,2006,27(12):2 469-2 488.
[18]詹志飞.基于被动微波遥感数据的南极冰盖融化探测[D].北京:中国地质大学,2010. ZHAN Zhi-fei.A Study on monitoring Antarctic ice sheet surface melting using passive microwave remote sensing data[D].Beijing:China University of Geosciences,2010.
[19]叶玉芳.基于TIMESAT算法的南极冰盖冻融探测研究 [D].北京:北京师范大学,2011. YE Yu-fang.The Antarctic ice sheet freeze-thaw detection based on TIMESAT algorithm[D].Beijing:Beijing Normal University,2011.
[20]梁 雷,郭华东,李新武.基于微波辐射计的南极冰盖冻融时空变化分析[J].遥感学报,2013,17(2):423-438. LIANG Lei,GUO Hua-dong,LI Xin-wu.Analysis of spatio-temporal variation of snowmetlt in Antarctica derived from microwave radiometer data[J].Journal of Remote Sensing,2013,17(2):423-438.
[21]王安义,郭世坤.最小二乘支持向量机在信道均衡中的应用[J].西安科技大学学报,2014,34(5):591-595. WANG An-yi,GUO Shi-kun.Application of least squares support vector machine in channel equalization[J].Journal of Xi'an University of Science and Technology,2014,34(5):591-595.
[22]李朋林,赵 晶,马琰玲.基于SVM的人才资源对陕西经济增长影响的预测模型研究 [J].西安科技大学学报,2012,32(5):637-642. LI Peng-lin,ZHAO Jing,MA Yan-ling.Forecast model of talent resources to economic growth in Shaanxi province based on SVM[J].Journal of Xi'an University of Science and Technology,2012,32(5):637-642.

备注/Memo

备注/Memo:
收稿日期:2017-03-10 责任编辑:李克永
基金项目:国家自然科学基金(41606209,41274123); 中国极地科学战略研究基金(20150313); 郑州市科学基金(20150313); 河南工业大学博士基金(150525)
通讯作者:王星东(1982-),男,陕西宝鸡人,博士,讲师,E-mail:zkywxd@163.com
更新日期/Last Update: 2017-12-11