[1]谷拴成,黄荣宾,苏培莉,等.基于统一强度理论的隧洞弹塑性应力解析[J].西安科技大学学报,2016,(06):806-812.[doi:10.13800/j.cnki.xakjdxxb.2016.0608]
 GU Shuan-cheng,HUANG Rong-bin,SU Pei-li,et al.Elastoplastic stress analysis of tunnel based on the unified strength criterion[J].Journal of Xi'an University of Science and Technology,2016,(06):806-812.[doi:10.13800/j.cnki.xakjdxxb.2016.0608]
点击复制

基于统一强度理论的隧洞弹塑性应力解析()
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2016年06期
页码:
806-812
栏目:
出版日期:
2016-12-30

文章信息/Info

Title:
Elastoplastic stress analysis of tunnel based on the unified strength criterion
文章编号:
1672-9315(2016)06-0806-07
作者:
谷拴成1黄荣宾1苏培莉1丁 潇12李 昂1
1.西安科技大学 建筑与土木工程学院,陕西 西安 710054;
2.西安工业大学 建筑工程学院,陕西 西安 710021
Author(s):
GU Shuan-cheng1HUANG Rong-bin1SU Pei-li1 DING Xiao12LI Ang1
1.College of Civil and Architectural Engineering,Xi'an University of Science and Technology,Xi'an 710054,China;
2.School of Civil and Architecture Engineering,Xi'an Technological University,Xi'an 710021,China
关键词:
统一强度理论 隧洞围岩 芬纳公式 中间主应力 弹塑性分析
Keywords:
unified strength theory tunnel surrounding rock fenner formula intermediate principal stress elasto-plastic analysis
分类号:
U 452
DOI:
10.13800/j.cnki.xakjdxxb.2016.0608
文献标志码:
A
摘要:
基于统一强度理论对第一主应力为径向应力及环向应力2种情况进行弹塑性应力分析,推导得出了围岩应力及塑性区半径计算公式。隧洞围岩有完全弹性状态、最大主应力为径向应力的弹塑性状态及最大主应力为环向应力的弹塑性状态3种状态,隧洞弹塑性分析时,首先判断围岩所处状态,进而选择正确的公式进行计算。分析结果表明中间主应力有利于围岩充分发挥其强度潜能,从而提高隧洞围岩稳定性,而且中间主应力系数越小,围岩稳定状态对中间应力敏感度越高; 当洞内压力小于第二临界应力时,增大洞内压力有利于提高围岩稳定性,而当洞内压力大于第二临界应力时,则围岩稳定性随洞内压力增大而降低。
Abstract:
Based on the unified strength theory,the elastic-plastic stress analysis is carried out under the premise that the first principal stress in two cases of radial stress and circumferential stress,and the formula of the radius of the surrounding rock and the plastic zone is derived.Tunnel surrounding rock has three states including the elastic state,the elastoplastic state that the maximum principal stress is the radial stress and the elastoplastic state that the maximum principal stress is the circumferential stress.When the elastic-plastic analysis was carried out on the tunnel,the state of the surrounding rock should be judged and the correct formula is chosen to calculate.Analysis results show that the intermediate principal stress is benefit to the rock to give full play to the strength of the potential,so as to improve the stability of surrounding rock of the tunnel and the smaller intermediate principal stress coefficient,the higher sensitivity of the surrounding rock stability to the intermediate stress.When the inside pressure is less than the second critical stress and increasing the hole pressure is beneficial to improving the stability of surrounding rock,while the hole pressure is greater than the second critical stress,the stability of surrounding rock will reduce with the increase of the hole pressure.

参考文献/References:

[1] 王军祥,姜谙男.岩石弹塑性损伤本构模型建立及在隧洞工程中的应用[J].岩土力学,2015(4):1 147-1 158. WANG Jun-xiang,JIANG An-nan.An elastoplastic damage constitutive model of rock and its application to tunnel engineering[J].Rock and Soil Mechanics,2015(4):1 147-1 158.
[2] 崔 岚,郑俊杰,章荣军,等.弹塑性软化模型下隧洞围岩变形与支护压力分析[J].岩土力学,2014(3):717-722,728. CUI Lan,ZHENG Jun-jie,ZHANG Rong-jun,et al.Study of support pressure and surrounding rock deformation of a circular tunnel with an elastoplastic softening model[J].Rock and Soil Mechanics,2014(3):717-722,728.
[3] Talobre J A.Mecanique des roches[M].Paris:Dunod,1967.
[4] 李咏偕,施泽华.塑性力学[M].北京:水利电力出版社,1987. LI Yong-xie,SHI Ze-hua.Plastic mechanivs[M].Beijing:Water Resources and Eleectric Power Press,1987.
[5] H Kastner.Statik des tunel und stollenbauess[M].Berlin:Springer-Verlag,1962.
[6] 许东俊,耿乃光.岩石强度随中间主应力变化规律[J].固体力学学报,1985(1):72-80. XU Dong-jun,GENG Nai-guang.The variation law of rock strength with increase of intermediate principal stress[J].Acta Mechanica Solida Sinica,1985(1):72-80.
[7] 俞茂宏.工程强度理论[M].北京:高等教育出版社,1999. YU Mao-hong.Engineering strength theory[M].Beijing:Higher Education Press,1999.
[8] 俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报,1994,16(2):1-10. YU Mao-hong.Unified strength theory for geoma-terials and its applications[J].Chinese Journal of Geotechnical Engineering,1994,16(2):1-10.
[9] 俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998. YU Mao-hong.The application of twin shear theory[M].Beijing:Science Press,1998.
[10]胡小荣,俞茂宏.统一强度理论及其在巷道围岩弹塑性分析中的应用[J].中国有色金属学报,2002(5):1 021-1 026. HU Xiao-rong,YU Mao-hong.Unified strength theory and its application in elasto-plastic analysis to tunnel[J].The Chinese Journal of Nonferrous Metals,2002(5):1 021-1 026.
[11]王继秀,赵均海,王乐健,等.基于统一强度理论的井筒围岩应力分析[J].建筑科学与工程学报,2009(3):105-109. WANG Ji-xiu,ZHAO Jun-hai,WANG Le-jian,et al.Stress analysis of wellbore rock based on unified strength theory[J].Journal of Architecture and Civil Engineering,2009(3):105-109.
[12]张常光,张庆贺,赵均海.考虑应变软化、剪胀和渗流的水工隧洞解析解[J].岩土工程学报,2009,31(12):1 941-1 946. ZHANG Chang-guang,ZHANG Qing-he,ZHAO Jun-hai.Analytical solutions of hydraulic tunnels considering strain softening,shear dilation and seepage[J].ChineseJournal of Geotechnical Engineering,2009,31(12):1 941-1 946.
[13]曾开华,鞠海燕,张常光.深埋圆形隧洞弹塑性位移统一解及其比较分析[J].岩土力学,2011(5):1 315-1 319. ZENG Kai-hua,JU Hai-yan,ZHANG Chang-guang.Elastoplastic unified solution for displacements around a deep circular tunnel and its comparative analysis[J].Rock and Soil Mechanics,2011(5):1 315-1 319.
[14]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002. ZHENG Ying-ren,SHEN Zhu-jiang,GONG Xiao-nan.The principles of geotechnical plastic mechanics[M].Beijing:China Architecture and Building Press,2002.
[15]B.B.Соколовский.塑性力学[M].王振常,译.北京:建筑工程出版社,1957. B.B.Соколовский.Plastic mechanics[M].WANG Zhen-chang,translator.Beijing:Construction Engineer-ing,1957.
[16]徐芝纶.弹性力学[M].北京:人民教育出版社,1982. XU Zhi-guan.Elastic mechanics[M].Beijing:People's Education Press,1982.
[17]任青文,张宏朝.关于芬纳公式的修正[J].河海大学学报,2001,29(6):109-111. REN Qing-wen,ZHANG Hong-chao.A modification of fanner formula[J].Journal of Hehai University,2001,29(6):109-111.

备注/Memo

备注/Memo:
收稿日期:2016-08-11 责任编辑:李克永
基金项目:国家自然科学基金(51508462); 陕西省科学基础研究计划(2016JM4014)
通讯作者:谷拴成(1963-),男,陕西省扶风人,博士生导师,E-mail:yikaiyizhi@qq.com
更新日期/Last Update: 2016-11-28