[1]吴延海,张 婧,陈 康.改进的基于均值滤波的单幅图像去雾算法研究[J].西安科技大学学报,2016,(04):583-588.[doi:10.13800/j.cnki.xakjdxxb.2016.0421]
 WU Yan-hai,ZHANG Jing,CHEN Kang.Improved defogging algorithm of single image based on mean filter[J].Journal of Xi'an University of Science and Technology,2016,(04):583-588.[doi:10.13800/j.cnki.xakjdxxb.2016.0421]
点击复制

改进的基于均值滤波的单幅图像去雾算法研究(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2016年04期
页码:
583-588
栏目:
出版日期:
2016-08-30

文章信息/Info

Title:
Improved defogging algorithm of single image based on mean filter
文章编号:
1672-9315(2016)04-0583-06
作者:
吴延海张 婧陈 康
西安科技大学 通信与信息工程学院,陕西 西安 710054
Author(s):
WU Yan-haiZHANG JingCHEN Kang
College of Communication and Information Engineering,Xi'an University of Science and Technology,Xi'an 710054,China
关键词:
图像去雾 均值滤波 导向滤波 大气耗散函数
Keywords:
image defogging mean filter guide filter atmospheric dissipation function
分类号:
TP 301
DOI:
10.13800/j.cnki.xakjdxxb.2016.0421
文献标志码:
A
摘要:
雾天条件下采集的图像存在低对比度和低场景可见度问题,传统的去雾算法时间复杂度高、速度慢,无法应用于实时图像处理。为此,结合大气光特性提出一种改进的基于均值滤波的单幅图像复原方法。该方法以大气散射模型为基础,首先利用均值滤波得到准确的大气耗散函数; 引入直方图修正机制下的自适应保护因子,更正明亮区域的大气散射函数; 大气光采用效率更高的四叉树算法求解; 最后由大气散射模型计算复原图像并进行图像的亮度调整,从而得到一幅清晰的无雾图像。仿真实验结果表明:该算法的场景适应能力强,复原图像色彩感丰富。与经典的去雾算法相比,该算法在保证去雾效果的同时,克服了导向滤波算法时间复杂度高、速度慢的缺陷。
Abstract:
In foggy conditions,acquired images have low contrast ratio and low scene visibility problems.The traditional defogging algorithm has high time complexity with low speed characteristics and can not be applied in real-time image processing.Thus,a single image restoration method based on mean filter is proposed in this paper combined with the optical properties of atmospheric.In this method,on the basis of atmospheric scattering model,accurate atmospheric dissipation function can be achieved firstly using mean filter.The adaptive histogram correction mechanism under the protection factor is introduced to correct atmospheric scattering function in bright areas.Atmosphere light is obtained by quadtree algorithm which is more efficient.Finally,restored image is calculated by the atmospheric scattering model and the brightness of the image is adjusted,and a clear image without fog is obtained.Simulation results show that this algorithm has a strong adaptability to various scenes and restored images have plentiful colors.Compared with the classic defogging algorithm,this algorithm ensures the defogging effect while overcomes the high time complexity and low speed defects of guide filter algorithm.

参考文献/References:

[1] Tan R T.Visibility in bad weather from a single image[C]//CVPR,2008:1-8.
[2] Fattal R.Single image dehazing[J].Acm Transactions on Graphics,2008,27(3):1-9.
[3] He K,Sun J,Tang X.Single image haze removal using dark channel prior[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2010:2 341-2 353.
[4] He K,Sun J,Tang X.Guided image filtering[J].Pattern Analysis & Machine Intelligence IEEE Transactions on,2013,35(6):1 397-1 409.
[5] Tarel J P,Hautiere N.Fast visibility restoration from a single color or gray level image[C]// Computer Vision,2009 IEEE 12th International Conference on.IEEE,2009:2 201-2 208.
[6] 蒋建国,侯天峰,齐美彬.改进的基于暗原色先验的图像去雾算法[J].电路与系统学报,2011,16(2):6-11. JIANG Jian-guo,HOU Tian-feng,QI Mei-bin.Improved algorithm on image haze removal using dark channel prior[J].Journal of Circuits & Systems,2011,16(2):7-12.
[7] Wang G,Ren G,Jiang L,et al.Single image dehazing algorithm based on sky region segmentation[J].Information Technology Journal,2013,12(6):1 168-1 175.
[8] Narasimhan S G,Nayar S K.Removing Weather Effects from Monochrome Images[C]//Proceedings/CVPR,IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001:Ⅱ-186-Ⅱ-193(2).
[9] Narasimhan S G,Nayar S K.Contrast restoration of weather degraded images[J].Pattern Analysis & Machine Intelligence IEEE Transactions on,2003,25(6):713-724.
[10]Narasimhan S G,Nayar S K.Vision and the atmosphere[J].International Journal of Computer Vision,2002,48(3):233-254.
[11]Kim J H,Jang W D,Sim J Y,et al.Optimized contrast enhancement for real-time image and video dehazing[J].Journal of Visual Communication & Image Representation,2013,24(3):410-425.
[12]Hautière N,Tarel J P,Aubert D,et al.Blind contrast enhancement assessment by gradient ratioing at visible edges[J].Image Analysis & Stereology,2008,27(2):87-95.
[13]吴延海,张 烨,马孟新.基于NSCT变化和压缩感知的图像融合[J].西安科技大学学报,2015,35(4):480-486. WU Yan-hai,ZHANG Ye,MA Meng-xin.Image fusion based on NSCT transformation and compressive sensing[J].Journal of Xi'an University of Science and Technology,2015,35(4):480-486.
[14]郭 昕.域合并的彩色图像分割算法[J].西安科技大学学报,2015,35(3):392-397. GUO Xin.Color image segmentation method of statistical region merging[J].Journal of Xi'an University of Science and Technology,2015,35(3):392-397.

相似文献/References:

[1]吴延海,潘 晨,吴 楠.改进的Otsu递归分割单幅图像去雾算法研究[J].西安科技大学学报,2017,(03):438.[doi:10.13800/j.cnki.xakjdxxb.2017.0320]
 WU Yan-hai,PAN Chen,WU Nan.Single image dehazing based on an improved recursive segmentation of Otsu algorithm[J].Journal of Xi'an University of Science and Technology,2017,(04):438.[doi:10.13800/j.cnki.xakjdxxb.2017.0320]

备注/Memo

备注/Memo:
基金项目:陕西省科技攻关计划(2012K06-16); 陕西省自然科学基金(2015JQ6221,2016JQ6064)
通讯作者:吴延海(1957-),男,山东荷泽人,教授,E-mail:wyh7388@163.com
更新日期/Last Update: 2016-07-15