[1]阴爱英.基于线程并行计算的Apriori算法[J].西安科技大学学报,2014,(01):71-74.
 YIN Ai-ying.Apriori algorithm based on thread parallel computing[J].Journal of Xi'an University of Science and Technology,2014,(01):71-74.
点击复制

基于线程并行计算的Apriori算法(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2014年01期
页码:
71-74
栏目:
出版日期:
2014-02-28

文章信息/Info

Title:
Apriori algorithm based on thread parallel computing
文章编号:
10.13800/j.cnki.xakjdxxb.2014.0115
作者:
阴爱英12
1.福州大学 数学与计算机科学学院,福建 福州 350108; 2.福州大学 至诚学院,福建 福州 350108
Author(s):
YIN Ai-ying12
1.College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China;2.Department of Computer Engineering,Zhicheng College of Fuzhou University,Fuzhou 350108,China
关键词:
线程并行计算Apriori算法
Keywords:
thread parallel computing apriori algorithm
分类号:
TP 311.13
文献标志码:
A
摘要:
针对数据挖掘中经典的Apriori算法在计算频繁项目集时需消耗大量的时间缺点,文中利用多线程并行计算的特点,提出了基于线程并行计算的Apriori算法,该算法是将统计候选项目个数的任务交给多线程来执行,从而达到减少Apriori算法的运行时间。通过实验数据分析,该算法对减少Apriori算法的运行时间有很大的提高。
Abstract:
Considering the Apriori data mining algorithm in the classic calculation of frequent itemsets requires a lot of time,using characteristics of multi-threaded parallel computing,thread is proposed based on the Apriori algorithm of parallel computing,this algorithm is to hand the task of statistics of the number of candidate item over to multi-thread to execute,so as to reduce the running time of the Apriori algorithm.Through the analysis of the experimental data,the algorithm has improved greatly to reduce the running time of the Apriori algorithm.

参考文献/References:

[1]Han J,Kamber M.Data mining:concepts and techniques[M].San Mateo,CA:Morgan Kaufmann,2000.
[2]LIU Yian,YANG Bin.Research of an improved Apriori algorithm in mining association rules[J].Journal of Computer Applications,2007,27(2):418-420.
[3]徐章艳,刘美玲,张师超,等.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. XU Zhang-yan,LIU Mei-ling,ZHANG Shi-chao,et al.Three optimized methods of Apriori algorithm[J].Computer Engineering and Applications,2004,40(36):190-192.
[4]钱光超,贾瑞玉,张然,等.Apriori算法的一种优化方法[J].计算机工程,2008,34(23):196-198. QIAN Guang-chao,JIA Rui-yu,ZHANG Ran,et al.One optimized method of Apriori algorithm[J].Computer Engineering,2008,34(23):196-198.
[5]李云峰,陈建文,程代杰.关联规则挖掘的研究及对Apriori算法的改进[J].计算机工程与科学,2002,24(6):65-68. LI Yun-feng,CHEN Jian-wen,CHENG Dai-jie.Research on mining association rules and the improvement of Apriorite algorithms[J].Computer Engineering & Science,2002,24(6):65-68.
[6]崔贯勋,李梁,王柯柯,等.关联规则挖掘中Apriori算法的研究与改进[J].计算机应用,2010,30(11):2 952-2 955. CUI Guan-xun,LI Liang,WANG Ke-ke,et al.Research and improvement on Apriori algorithm of association rule mining[J].Journal of Computer Applications,2010,30(11):2 952-2 955.
[7]兰天,杨君锐.一种关联规则增量更新算法[J].西安科技大学学报,2009,29(1):113-116. LAN Tian,YANG Jun-rui.An algorithm for updating frequent itemsets[J].Journal of Xi’an University of Science and Technology,2009,29(1):113-116.
[8]李航,刘宗田,陈慧琼.挖掘关联规则的并行算法[J].小型微型计算机系统,2002,23(10):1 231-1 234. LI Hang,LIU Zong-tian,CHEN Hui-qiong.Parallel algorithm for mining association rules[J].Minimicro Systems,2002,23(10):1 231-1 234.
[9]尚学群,沈均毅.并行关联规则挖掘综述[J].计算机工程,2004,30(14):1-3. SHANG Xue-qun,SHEN Jun-yi.Survey of parallel association rule mining[J].Computer Engineering,2004,30(14):1-3.
[10]范丽君.相关规则并行算法的改进[J].兰州大学学报,2004,40(6):43-46. FAN Li-jun.Improvement on the parallel algorithm of association rule[J].Journal of Lanzhou University,2004,40(6):43-46.

相似文献/References:

[1]王学龙,宋汐瑾,马迅飞.油库实时安全监控及信息管理系统[J].西安科技大学学报,2009,(04):495.[doi:10.13800/j.cnki.xakjdxxb.2009.04.026]

备注/Memo

备注/Memo:
收稿日期:2013-09-10 作者简介:阴爱英(1976-),女,山西芮城人,硕士研究生,E-mail:Wyb5820@fzu.edu.cn
更新日期/Last Update: 1900-01-01