[1]张强骅,姚 锐,邓伟妮,等.PM10污染及BP神经网络气象预测[J].西安科技大学学报,2010,(01):43.
 ZHANG Qiang-hua,YAO Rui,DENG Wei-ni,et al.pollution and its BP neural network forecast model[J].Journal of Xi'an University of Science and Technology,2010,(01):43.
点击复制

PM10污染及BP神经网络气象预测()
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2010年01期
页码:
43
栏目:
出版日期:
2010-01-29

文章信息/Info

Title:
pollution and its BP neural network forecast model
文章编号:
1672-9315(2010)01-0043-04
作者:
张强骅1姚 锐2邓伟妮3王贵荣2
1.青海岩土工程勘察咨询公司,青海 西宁 810001; 2.西安科技大学 地质与环境学院, 陕西 西安 710054; 3.山东电力工程咨询院,山东 济南 250014
Author(s):
ZHANG Qiang-hua1YAO Rui2 DENG Wei-ni3WANG Gui-rong2
1.College of Energy Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China; 2. School of Geological Engineering and Surveying, Chang'an University, Xi'an 710054, China
关键词:
PM10 预测 BP神经网络 MATLAB
Keywords:
soil anchor water content P-S curve ultimate pullout force prestress
分类号:
X513
文献标志码:
A
摘要:
在研究近几年西安市PM10污染的现状的基础上,初步选取8类20个气象因子,再采用主成分分析法进行精简,得到11个与PM10相关的主要因子,在此基础上,采用人工神经网络模型对西安市PM10污染状况进行预测,确定了网络模型结构。预测结果表明:预测值与实际值的相关系数达到0.801,在265个测试样本中,预测结果与实际完全吻合的为212 d,占80%; 相差不超过一级的天数为262 d,占98.87%,与实际情况基本一致。
Abstract:
The mechanical characteristics of soil anchor are studied by model test. In this test, by changing soil water content, to investigate its influence on P-S curve, ultimate pullout porce and prestress of soil anchor. The results show that the axial force and shear stress of out end of anchorage section is biggest. The P-S curve consists of elastic section, elastic-plastic section, plastic section and residual section. The lower the soil water content is, the more significent the elastic section is. With the water content increasing, the elastic-plastic section becomes shorter and shorter, and disappears finally. The higher the soil water content is, the lower the ultimate pullout force of anchor is. The variation of it with soil water content is an inverse sigmoid curve. For a prestressed anchor, the prestress lossing with time is a negative exponential function, and when the soil water content increases, the prestress will continue to decrease.

参考文献/References:

[1] 朱广一.大气可吸入颗粒物研究进展[J].环境保护科学,2002,28(5):3-5. ZHU Guang-yi.Study progress on inhalable particles in atmosphere[J]. Environmental Protection Science,2002,28(5):3-5.
[2] Sergio Rodriguez.Comparative PM10-PM2.5source contribution study at rural,urban and industrial sites during PM episodes in Eastern Spain[J].Science of the Total Environment, 2004,328:95-113.
[3] 史 焱,俞周杰,陈一定.杭州市大气环境质量评价、预测及防治对策研究[J].上海农业学报,2008,24(1):69-72. SHI Yan, YU Zhou-jie,CHEN Yi-ding.Study on assessment,forecast and control of atmospheric environmental quality in Hangzhou[J].Acta Agriculturae Shanghai,2008,24(1):69-72.
[4] 王灿星,候树强.杭州市区大气中PM1等污染物的预测研究[J].仪器仪表学报,2008,25(4):780-781. WANG Can-xing,HOU Shu-qiang. Research on prediction of PM10,SO2and NO2 pollutions in Hangzhou city zone[J].Journal of Harbin Institute of Technology,2008,25(4):780-781.
[5] 郎 君,苏小红,周秀杰.基于有机灰色神经网络模型的空气污染指数预测[J].哈尔滨工业大学学报,2004,36(12):1 598-1 601. LANG Jun,SU Xiao-hong,ZHOU Xiu-jie.Prediction for air pollution index based on organicgrey neural network model[J].Journal of Harbin Institure of Technology,2004,36(12):1 598-1 601.
[6] 王成武, 李树刚, 岳海玲.神经网络BP模型在室内轰燃预测中的应用[J].西安科技大学学报,2005,25(4):452-455. WANG Cheng-wu,LI Shu-gang, YUE Hai-ling.Application of artificial neural network BP model to the prediction of flashover in enclosure fires[J]. Journal of Xi'an University of Science and Technology,2005,25(4):452-455.
[7] 肖 锋.基于BP神经网络的数字图像边缘检测算法的研究[J]. 西安科技大学学报,2005,25(3):372-375. XIAO Feng.Edge detection algorithm based on BP neural networks in digital image[J].Journal of Xi'an University of Science and Technology,2005,25(3):372-375.

相似文献/References:

[1]王生全,刘柏根,井 津,等.矿井瓦斯涌出量建模预测[J].西安科技大学学报,2010,(03):271.
 WANG Sheng-quan,LIU Bo-gen,JING Jin,et al.Prediction of mine gas emission quantityCorresponding[J].Journal of Xi'an University of Science and Technology,2010,(01):271.
[2]王媛彬,马宪民.基于图像型的煤矿早期外因火灾预测及识别方法研究[J].西安科技大学学报,2012,(03):389.
 WANG Yuan-bin,MA Xian-min.Image-based prediction and recognition method for exogenous-fire in coal mine[J].Journal of Xi'an University of Science and Technology,2012,(01):389.
[3]李中才,冯述虎.集对分析法在煤与瓦斯突出综合预测中的应用[J].西安科技大学学报,2007,(01):134.[doi:10.3969/j.issn.1672-9315.2007.01.029]
 LI Zhong-cai FENG Shu-hu.Application of set-pair analysis method for forecasting coal-gas emerging[J].Journal of Xi'an University of Science and Technology,2007,(01):134.[doi:10.3969/j.issn.1672-9315.2007.01.029]
[4]吕靖烨,杜靖南,曹铭,等.利用ARIMA-SVM模型的碳排放交易价格预测[J].西安科技大学学报,2020,(03):542.[doi:10.13800/j.cnki.xakjdxxb.2020.0323]
 LYU Jing-ye,DU Jing-nan,CAO Ming,et al.Carbon emissions trading price prediction using the ARIMA-SVM model[J].Journal of Xi'an University of Science and Technology,2020,(01):542.[doi:10.13800/j.cnki.xakjdxxb.2020.0323]

备注/Memo

备注/Memo:
基金项目: 陕西省自然科学基金项目(ZK2007D09) 通讯作者: 张强骅(1962-),男,河北任丘人,高级工程师,主要从事环境与工程地质研究工作.
更新日期/Last Update: 2010-01-29