[1]王 芬,戚 霁,张婷婷,等.具有多级导电网络钴酸镍的电催化氧还原性能[J].西安科技大学学报,2020,(01):141-147.
 WANG Fen,QI Ji,ZHANG Ting-ting,et al.Catalytic performance for oxygen reduction reaction of Nickel Cobaltate with multistage conductive network structure[J].Journal of Xi'an University of Science and Technology,2020,(01):141-147.
点击复制

具有多级导电网络钴酸镍的电催化氧还原性能(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2020年01期
页码:
141-147
栏目:
出版日期:
2020-02-15

文章信息/Info

Title:
Catalytic performance for oxygen reduction reaction of Nickel Cobaltate with multistage conductive network structure
文章编号:
1672-9315(2020)01-0141-07
作者:
王 芬12戚 霁12张婷婷12方 园12
(1.陕西科技大学 材料科学与工程学院,陕西 西安 710021; 2.陕西省无机材料绿色制备与功能化重点实验室,陕西 西安 710021)
Author(s):
WANG Fen12QI Ji12ZHANG Ting-ting12FANG Yuan12
(1.College of Materials Science and Engineering,Shaanxi University of Science and Technology,Xi'an 710021,China; 2.Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials,Xi'an 710021,China)
关键词:
直接甲醇燃料电池 阴极催化剂 NC/Co1.29Ni1.71O4 多级导电网络 脲醛树脂基碳
Keywords:
direct methanol fuel cell cathode catalyst NC/ Co1.29Ni1.71O4 multistage conductive network urea formaldehyde resin base carbon
分类号:
TM 911.4
文献标志码:
A
摘要:
在花状脲醛树脂基碳材料上采用两步法合成了具有多级导电网络的氮掺杂碳负载Co1.29Ni1.71O4(NC/Co1.29Ni1.71O4),并探究了NC/ Co1.29Ni1.71O4作为氧还原催化剂的催化性能及直接甲醇燃料电池的单电池性能。文中分别使用NC/ Co1.29Ni1.71O4及Co1.29Ni1.71O4样品作为直接甲醇燃料电池阴极催化剂,PtRu/C作为阳极催化剂和聚合物纤维膜作为电解质膜,进行了单电池性能测试。在以Co1.29Ni1.71O4为阴极催化剂时,电池最大输出功率密度为1.9 mW/cm2,而以NC/Co1.29Ni1.71O4作为阴极催化剂,其电池最大输出功率密度为7.4 mW/cm2。并且在阻抗测试中,以NC/Co1.29Ni1.71O4和Co1.29Ni1.71O4样品作为阴极催化剂对应的DMFCs电池内阻分别为0.26 Ω·cm-2和0.79 Ω·cm-2。结果表明,具有多级导电网络结构的NC/Co1.29Ni1.71O4展现了更好的导电性和氧还原催化性能。其中,NC/Co1.29Ni1.71O4中的脲醛树脂基碳可以形成三维导电网络和作为催化剂负载骨架,而同时Co1.29Ni1.71O4纳米片表面吸附的导电炭黑,在Co1.29Ni1.71O4纳米片表面形成了新的导电网络,进一步加速反应过程中电子在Co1.29Ni1.71O4纳米片上的传输,从而构筑多级导电网络,这显著提高了NC/Co1.29Ni1.71O4电催化剂的本征催化活性。
Abstract:
The nitrogen-doped carbon-supported Co1.29Ni1.71O4(NC/ Co1.29Ni1.71O4)with multistage conductive network was synthesized by two-step processes on the urea-formaldehyde resin based carbon materials with flower-shape.NC/ Co1.29Ni1.71O4 was used as cathode catalyst for oxygen reduction reaction and its out performance for direct methanol fuel cell(DMFC)were investigated in this work.The single DMFCs performance tests consisted with NC/Co1.29Ni1.71O4 or Co1.29Ni1.71O4 samples as the cathode catalyst,PtRu/C as the anode catalyst and the polymer fiber membrane as an electrolyte membrane.When Co1.29Ni1.71O4 was used as the cathode catalyst,the peak power density of the DMFC was only 1.9 mW/cm2,while the peak power density of NC/Co1.29Ni1.71O4 could reached 7.4 mW/cm2.The ohmic resistances for NC/Co1.29Ni1.71O4 orCo1.29Ni1.71O4-based DMFCs were 0.26 and 0.79 Ω·cm-2,respectively.These results show that NC/Co1.29Ni1.71O4 with multistage conductive network structure exhibits better conductivity and oxygen reduction catalytic performance.The internal urea-formaldehyde resin based aiducarbon forms a three dimensional conductive network and provided a growth skeleton for Co1.29Ni1.71O4.At the same time,the conductive carbon black adsorbed on the surface of Co1.29Ni1.71O4 nanosheets,which constructs a new conductive network,further accelerating the transfer efficiency of electron during the reaction process.The multistage conductive network on NC/Co1.29Ni1.71O4 electro-catalyst can enhance its intrinsic catalytic activity.

参考文献/References:

[1] 聂文杰,张 蕾,沙响玲.NiO/γ-Al2O3单金属催化剂的制备及脱硫性能研究[J].西安科技大学学报,2016,36(5):675-679. NIE Wen-jie,ZHANG Lei,SHA Xiang-ling.Preparation of NiO/γ-Al2O3 catalyst and its desulfurization performance[J].Journal of Xi'an University of Science and Technology,2016,36(5):675-679. [2] 张卫国,杨建业,侯恩科.超高有机硫煤中微量元素的地球化学规律[J].西安科技大学学报,2019,39(1):56-62. ZHANG Wei-guo,YANG Jian-ye,HOU En-ke.Geochemical regularity of trace elements in superhigh organic sulfur coal[J].Journal of Xi'an University of Science and Technology,2019,39(1):56-62. [3]刘永娟,张蕾,张磊,等.湿法氧化脱硝并联与串联工艺对比研究[J].西安科技大学学报,2016,36(6):857-862. LIU Yong-juan,ZHANG Lei,ZHANG Lei,et al.Precess comparisons of wet oxidization methods in removing NO by wet using series or parallel connection[J].Journal of Xi'an University of Science and Technology,2016,36(6):857-862. [4]侯 明,衣宝廉.燃料电池的关键技术[J].科技导报,2016,34(6):52-61. HOU Ming,YI Bao-lian.Fuel cell technologies for vehicle applications[J].Science and Technology Review,2016,34(6):52-61. [5]刘洋洋,孙燕芳,靳 文,等.直接甲醇燃料电池阳极催化剂的研究进展[J].电源技术,2019,43(8):1397-1402. LIU yang-yang,SUN Yan-fang,JIN Wen,et al.Research progress on anode catalysts for direct methanol fuel cell[J].Chinese Journal of Power Sources,2019,43(8):1397-1402. [6]伍赛特.燃料电池技术应用研究及未来前景展望[J].通信电源技术,2019,36(5):86-89. WU Sai-te.Application research and future prospect of fuel cell technology[J].Telecom Power Technolgy,2019,36(5):86-89. [7]周灵怡,郭士义,龚燕雯.直接甲醇燃料电池阳极催化剂的研究进展[J].发电设备,2018,32(1):15-18. ZHOU Ling-yi,GUO Shi-yi,GONG Yan-wen.Research progress of anode catalysts for direct methanol fuel cell[J].Power Equipment,2018,32(1):15-18. [8]葛 奔,祝叶华.燃料电池驱动未来[J].科技导报,2017,35(8):12-18. GE Ben,ZHU Ye-hua.Fuel cells drive the future[J].Science and Technology Review,2017,35(8):12-18. [9]蒋建婷,张文静,王 蔚,等.TiO2纳米材料在直接甲醇燃料电池阳极催化剂中应用的研究进展[J].材料科学与工程学报,2018,36(1):163-168. JIANG Jian-ting,ZHANG Wen-jing,WANG Wei,et al.Progresses and prospectives of TiO2 nanomaterials applied in the anode catalyst for direct methanol[J].Journal of Materials Science and Engineering,2018,36(1):163-168. [10]Fang Y,Wang Y,Wang F,et al.Fe-Mn bimetallic oxides catalyzed oxygen reduction reaction in alkaline direct methanol fuel cells[J].Rsc Advances,2018,8(16):8678-8687. [11]林 玲,朱 青,徐安武.直接甲醇燃料电池的阳极和阴极催化剂[J].化学进展,2015,27(9):1147-1157. LIN Ling,ZHU Qing,XU An-wu.Anode and cathode catalysts for direct methanol fuel cells[J].Progress in Chemistry,2015,27(9):1147-1157. [12]潘 云,吴承仁,陈绍维,等.氧还原催化材料与催化机理及活性位点的研究进展[J].材料导报,2019,33(S1):41-44. PAN Yun,WU Cheng-ren,CHEN Shao-wei,et al.Research progress of oxygen reduction catalytic materials and catalytic active sites[J].Materials Reports,2019,33(S1):41-44. [13]石建恒,于宏燕,曾心苗.燃料电池质子交换膜的研究现状[J].膜科学与技术,2009,29(2):94-98. SHI Jian-heng,YU Hong-yan,ZEN Xin-miao.Research status of proton exchange membrane for fuel cell[J].Membrane Science and Technology,2009,29(2):94-98. [14]王继明,燕希强,刘志祥,等.影响质子交换膜燃料电池耐久性的因素综述[J].广东化工,2019,46(13):96-97. WANG Ji-ming,YAN Xi-qiang,LIU Zhi-xiang,et al.Factors for durability of proton exchange menbrane fuel cell:review[J].Guangdong Chemical Industry,2019,46(13):96-97. [15]赵苹苹,胡 锴,蔡 苹,等.氧还原反应前沿与进展[J].大学化学,2019,34(5):33-41. ZHAO Ping-ping,HU Kai,CAI Ping,et al.Recent developments on advanced electrocatalysis for oxygen reduction reaction[J].University Chemistry,2019,34(5):33-41. [16]刘 萌.燃料电池阴极氧还原催化剂的研究进展[J].辽宁化工,2018,47(5):437-440. LIU Meng.Research progress on cathode oxygen reduction catalysts for fuel cells[J].Liaoning Chemical Industry,2018,47(5):437-440. [17]魏文硕,宋朝霞,曾 森,等.NiCo2O4/氧化石墨烯复合材料制备与电化学性能研究[J].材料科学与工艺,2018,26(5):47-53. WEI Wen-shuo,SONG Zhao-xia,ZEN Sen,et al.Preparation and electrochemical properties of sea urchin-like NiCo2O4/Go composites[J].Materials Science and Technology,2018,26(5):47-53. [18]Ren Q,Wang Z,Ke K,et al.NiCo2O4 nanosheets and nanocones as additive-free anodes for high-performance Li-ion batteries[J].Cermics International,2017,43(16):13710-13716. [19]张丽花,祝精燕,李新华.由Co/Ni配合物先驱体制备NiCo2O4/C&S电容器电极材料[J].广州化工,2018,46(24):48-50. ZHANG Li-hua,ZHU Jing-yan,Li Xin-hua.Synthesis of an extra-long-life supercapacitor based on NiCo2O4/C&S composite by decomposition of Co/Ni-based corrdination complex[J].Guangzhou Chemical Industry,2018,46(24):48-50. [20]Qian L,Gu L,Yang L,et al.Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation[J].Nanoscale,2013,5(16):7388-7396. [21]许世超,穆春盛,朱天哲,等.NiCo2O4修饰活性炭纤维作为超级电容器正极材料及其性能研究[J].现代化工,2019,39(8):143-146. XU Shi-chao,MU Chun-sheng,ZHU Tian-yang,et al.Study on performance of NiCo2O4 modified activated carbon fiber as cathode material of supercapacitor[J].Modern Chemical Industry,2019,39(8):143-146. [22]李作鹏,赵耀晓,刘 卫,等.脊椎状NiCo2O4纳米棒的制备及其析氧和氧还原性能研究[J].分子催化,2019,33(1):19-26. LI Zuo-peng,ZHAO Yao-xiao,LIU Wei,et al.Facile Synthesis of spine-like NiCo2O4 nanorods as highly efficient electrocatalysts for oxygen reduction and evolution reactions[J].Journal of Molecular Catalysis China,2019,33(1):19-26. [23]Zheng Z,Geng W,Wang Y,et al.NiCo2O4 nanoflakes supported on titanium suboxide as a highly efficient electrocatalyst towards oxygen evolution reaction[J].International Journal of Hydrogen Energy,2017,42(1):119-124. [24]Zhou X,Bai Z,Wu M,et al.3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction[J].Journal of Materials Chemistry A,2015,3(7):3343-3350. [25]Yin J,Zhou P,An L,et al.Self-supported nanoporous NiCo2O4 nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting[J].Nanoscale,2016,8(3):1390-1400. [26]Ozaki J,Tanifuji S,Furuichi A.Enhancement of oxygen reduction activity of nanoshell carbons by introducing nitrogen atoms from metal phthalocyanines[J].Electrochimica Acta,2010,55(6):1864-1871. [27] Kim H,Lee K,Woo S,et al.On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons[J].Physical Chemistry Chemical Physics,2011,13(39):17505-17510. [28] Fang Y,Wamg Y,Wang F,et al.3D structured Mn2O3 synthesized using tween surfactant:influence on the morphology and oxygen reduction catalytic performance[J].CrystEngComm,2019,21(3):420-429. [29] Liu Y,Chen Y,Li S,et al.Improved Charge Transfer in a Mn2O3@Co1.2Ni1.8O4 Hybrid for Highly Stable Alkaline Direct Methanol Fuel Cells with Good Methanol Tolerance[J].ACS Appled Materials and Interfaces,2018,10(11):9485-9494. [30] Tan Q,Qu T,Shu C,et al.High-Performance Polymer Fiber Membrane Based Direct Methanol Fuel Cell System with Non-Platinum Catalysts[J].ACS Sustainble Chemistry and Engineering,2019,7(20):17145-17153.

备注/Memo

备注/Memo:
收稿日期:2019-03-25 责任编辑:高 佳
基金项目:国家自然科学基金(41771576); 陕西省自然科学基础研究计划(2018JM4010); 陕西省教育厅科研计划项目(18JK0524)
通信作者:王 涛(1984-),男,河南汤阴人,博士,讲师,E-mail:wht432@163.com
更新日期/Last Update: 2020-02-15