[1]段国荣,刘元会.用差异演化-粒子群混合算法确定含水层参数[J].西安科技大学学报,2019,(03):549-554.[doi:10.13800/j.cnki.xakjdxxb.2019.0323]
 DUAN Guo-rong,LIU Yuan-hui.Differential evolution-particle swarm optimization mixed algorithm determine aquifer parameters[J].Journal of Xi'an University of Science and Technology,2019,(03):549-554.[doi:10.13800/j.cnki.xakjdxxb.2019.0323]
点击复制

用差异演化-粒子群混合算法确定含水层参数(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2019年03期
页码:
549-554
栏目:
目次
出版日期:
2019-05-30

文章信息/Info

Title:
Differential evolution-particle swarm optimization mixed algorithm determine aquifer parameters
文章编号:
1672-9315(2019)03-0549-06
作者:
段国荣刘元会
(长安大学 理学院,陕西 西安 710064)
Author(s):
DUAN Guo-rongLIU Yuan-hui
(College of Science,Chang'an University,Xi'an 710064,China)
关键词:
含水层参数 差异演化算法 粒子群优化算法 直线供水边界
Keywords:
aquifer parameters differential evolution algorithm particle swarm optimization algorithm linear pervious boundary
分类号:
TV 211.1+2
DOI:
10.13800/j.cnki.xakjdxxb.2019.0323
文献标志码:
A
摘要:
差异演化-粒子群混合优化算法是利用差异演化算法变异粒子个体的历史最优位置,保持种群多样性,与粒子群优化算法相结合的一种混合优化算法。应用差异演化-粒子群混合优化算法分析直线供水边界含水层抽水试验数据确定含水层参数,并将该算法所得计算结果与其他方法的结果进行比较,分析待估参数的不同取值范围对参数估计的影响,发现差异演化-粒子群混合优化算法能够有效地确定含水层参数,且目标函数值更小,计算精度更高,可达到1.673 1×10-6; 待估参数范围的增大对差异演化-粒子群混合优化算法的收敛性影响较小,当待估参数取值范围的上限扩大到原来的14倍时,收敛率高达97%,且得到目标函数值基本一致,由此可知,差异演化-粒子群混合优化算法对初值选取的敏感性低,寻优能力强,稳定性好。数值实验结果表明:差异演化-粒子群混合优化算法有效地避免了粒子群优化算法所出现的早熟现象,是分析抽水试验数据,确定含水层参数和计算观测孔与虚拟映射井之间距离的有效方法。
Abstract:
The differential evolution-particle swarm optimization mixed algorithm is a hybrid optimization algorithmcombiningwith particle swarm optimization algorithm andusing difference evolution algorithm to mutate individual historical best position to keep population diversity.It is applied in the analysis of pumping experiment data in linear pervious boundary to estimate the aquifer parameters.The calculation results are compared with the results of other methods,and influence of the range of initial guess value on estimating parameter is analyzed.It is pointed out that the differential evolution-particle swarm optimization mixed algorithm can effectively determine aquifer parameters with thesmallertarget function value and the higher calculation precision,which can reach 1.673 1×10-6.The wide range of initial values has less effect on the convergence.When the limit of the value range of the estimated parameter is increased to 14 times,the convergence rate is as high as 97%,and the target function value is basically the same.Thus the algorithm has lower sensitivity to initial selection,and better ability of searching and good stability.The results indicate it can effectively avoid the premature phenomenon of particle swarm optimization algorithm.Therefore the differential evolution-particle swarm optimization mixed algorithm is an effective method to analyze the pumping experiment data for determination of the aquifer parameters and calculation of the distance between the observation hole and the virtual mapping well.

参考文献/References:

[1] Sageev A,Home R N,Ramey H J.Detection of linear boundaries by drawdown test:a semilog type curve matching approach[C]//Water Resource Research,Nanjing,China,1985,21: 305-310.
[2]Chapuis R P.Assessment of methods and condition to locate boundaries: Ⅱ one straight recharge boundary[J].Groundwater,1994,32(4): 583-590.
[3]Sushil K Singh.Identifying effective distance to a recharge boundary[J].Journal of Hydraulic Engineering,2001,127(8):689-692.
[4]齐学斌.非稳定流抽水试验参数计算的迭代算法及计算机模拟[J].水利学报,1995,26(7):67-71. QI Xue-bin.Iterative algorithm and imitation for parameter calculation of non-equilibrium flow bumping test[J].Journal of Hydraulic Engineering,1995,26(7):67-71.
[5]郭建青,李 彦,王洪胜,等.分析供水边界在抽水试验数据的新方法[J].水利学报,2006,57(7):807-812. GUO Jian-qing,LI Yan,WANG Hong-sheng,et al.A new method for analyzing data of water pumping test[J].Journal of Hydraulic Engineering,2006,57(7):807-812.
[6]Sushil K Singh.Confined aquifer parameters from temporal derivative of drawdowns[J].Journal of Hydraulic Engineering,2001,127(6):466-470.
[7]Sushil K Singh.Simple method for confined parameter estimation[J].Journal of Irrigation and Drainage Engineering,2000,126(6):404-407.
[8]Department of the Interior(USDI)U.S.Groundwater manual[M].Washington D C:Bureau of Reclamation,1977:119.
[9]刘元会,常安定,邓秋霞.割离井法渗流模型的数值解[J].西安科技大学学报,2006,26(1):70-73. LIU Yuan-hui,CHANG An-ding,DENG Qiu-xia.The numerical solution of the seepage model for Divide-well[J].Journal of Xi'an University of Science and Technology,2006,26(1):70-73.
[10]常安定,刘元会,马 良.用割离井公式反求水文地质参数的图解法[J].西安科技大学学报,2006,26(2):204-207,211. CHANG An-ding,LIU Yuan-hui,MA Liang.A graphical method for calculating hydrogeological parameters by using the separation well formula[J].Journal of Xi'an University of Science and Technology,2006,26(2):204-207,211.
[11]郭建青,李 彦,王洪胜,等.粒子群优化算法在确定含水层参数中的应用[J].中国农村水利水电,2008,50(4):4-7. GUO Jian-qing,LI Yan,WANG Hong-sheng,et al.App-lication of particle swarm optimization algorithm to determination of aquifer parameters[J].Journal of Rural Water and Hydropower in China,2008,50(4):4-7.
[12]王静云,常安定,郭建青,等.基于混沌人工鱼群混合算法确定含水层参数[J].中国农村水利水电,2013,55(3):27-33. WANG Jing-yun,CHANG An-ding,GUO Jian-qing,et al.The parameters of aquifer are determined based on chaotic artificial fish swarm[J].Journal of Rural Water and Hydropower in China,2013,55(3):27-33.
[13]高志亮,陈 石,高 鹏.基于遗传算法的地下水非稳定流求参方法[J].西安科技大学学报,2004,24(4):434-437. GAO Zhi-liang,CHEN Shi,Gao Peng.Calculating hydro geological parameters basea on genetic algorithms[J].Journal of Xi'an University of Science and Technology,2004,24(4):434-437.
[14]杨陈东,常安定,李文胜,等.改进粒子群算法在确定含水层参数中的应用[J].水资源与水工程学报,2017,28(1):100-103. YANG Chen-dong,CHANG An-ding,LI Wen-sheng,et al.Application of improved particle swarm optimization algorithm to determination of aquifer parameters[J].Journal of Water Resources and Water Engineering,2017,28(1): 100-103.
[15]付晓刚,代锋刚,邹 晔.单纯形探索法在确定含水层参数中的应用[J].水资源与水工程学报,2011,22(6):46-49. FU Xiao-gang,DAI Feng-gang,ZOU Ye.Application of simple exploration to determination of aquifer parameters[J].Journal of Water Resources and Water Engineering,2011,22(6):46-49.
[16]付 翠,刘元会,郭建青,等.分析抽水实验数据单纯形差分进化混合算法[J].中国农村水利水电,2013,55(6):1-8. FU Cui,LIU Yuan-hui,GUO Jian-qing,et al.Mixed simple differential evolution algorithm analyzed by experimental data[J].Journal of Rural Water and Hydropower in China,2013,55(6):1-8.
[17]周秀秀,常安定,郭建青,等.混沌粒子群优化算法在确定含水层参数中的应用[J].水资源与水工程学报,2013,24(1):96-99. ZHOU Xiu-xiu,CHANG An-ding,GUO Jian-qing,et al.Application of chaos particle swarm optimization algorithm to determination of aquifer parametersrs[J].Journal of Water Resources and Water Engineering,2013,24(1):96-99.
[18]袁 帆,刘元会,郭建青,等.利用单纯形-粒子群混合算法确定越流含水层参数[J].南水北调与水利科技,2015,13(04):729-732,755. YUAN Fan,LIU Yuan-hui,GUO Jian-qing,et al.Estimation of leakage aquifer parameters with simplex particle swarm optimization algorithm[J].Journal of South-to North Water Transfers and Water Science & Technology,2015,13(4):729-732,755.
[19]黎延海.基于粒子群优化与差分进化混合算法的多目标优化及应用[D].西安:西安石油大学,2014. LI Yan-hai.Multi-objective optimization and application of hybrid algorithm based on particle swarm optimization and differential evolution[D].Xi'an:Xi'an Shiyou University,2014.
[20]毛 恒.粒子群优化算法的改进及应用研究[D].厦门:华侨大学,2008. MAO Heng.Improvement and application of particle swarm optimi-zation algorithm[D].Xiamen: Huaqiao University,2008.
[21]郭广寒,王志刚,郝志峰.基于差异演化的粒子群优化算法[J].哈尔滨商业大学学报(自然科学版),2008,24(3):290-292. GUO Guang-han,WANG Zhi-gang,HAO Zhi-feng.Particle swarm optimization algorithm based on differential evolution[J].Journal of Harbin University of Commerce(Natural Sciences Edition),2008,24(3):290-292.
[22]毛 恒,王永初.一种基于差异演化变异的粒子群优化算法[J].计算机工程与应用,2007,43(30):56-58. Mao Heng,Wang Yong-chu.Particle swarm optimization algorithm based on differential evolution mutation[J].Computer Engineering and Applications,2007,43(30):56-58.
[23]付 翠,刘元会,郭建青,等.识别河流水质模型参数的单纯形-差分进化混合算法[J].水力发电学报,2015,34(1):125-130. FU Cui,LIU Yuan-hui,GUO Jian-qing,et al.Simplex-differential evolution hybrid algorithm for parameter identification of river water quality model[J].Journal of Hydroelectric Engineering,2015,34(1):125-130.
[24]陈崇希,林 敏.地下水动力学[M].武汉:中国地质大学出版社,1999. CHEN Chong-xi,LIN Min.Groundwater dynamics[M].Wuhan: China University of Geosciences Press,1999.
[25]郭东屏,宋炎勋,钱 会,等.地下水动力学[M].西安:陕西科学技术出版社,1993. GUO Dong-ping,SONG Yan-xun,QIAN hui,et al.Groundwater dynamics[M].Xi'an: Shaanxi Science and Technology Press,1993.
[26]薛禹群.地下水动力学[M].北京:地质出版社,1986. XUE Yu-qun.Groundwater dynamics[M].Beijing: Geological Press,1986.
[27]Sushil K Singh.Aquifer boundaries and parameter identification simplified[J].Journal of Hydraulic Engineering,2002,128(8):774-780.
[28]Yang X S.Flower pollination algorithm for global optimization[C]//International Conference on Unconventional Compution and Natural Computation,2012,7445:240-249.

备注/Memo

备注/Memo:
收稿日期:2018-09-25 责任编辑:高 佳 基金项目:国家自然科学基金(11401045) 第一作者:段国荣(1992-),女,山西吕梁人,硕士研究生,E-mail:chddgr@126.com 通信作者:刘元会(1964-),男,陕西咸阳人,教授,E-mail:chdlyh@126.com 段国荣,刘元会.用差异演化-粒子群混合算法确定含水层参数[J].西安科技大学学报,2019,39(3):549-554. DUAN Guo-rong,LIU Yuan-hui.Differential evolution-particle swarm optimization mixedalgorithm determine aquifer parameters[J].Journal of Xi'an University of Science and Technology,2019,39(3):549-554.
更新日期/Last Update: 2019-05-30