[1]姜 华,郭芮伶,朱江涛.远程喷雾降尘两相射流流场研究[J].西安科技大学学报,2019,(02):249-255.[doi:10.13800/j.cnki.xakjdxxb.2019.0210 ]
 JIANG Hua,GUO Rui-ling,ZHU Jiang-tao.Two-phase jet flow field of remotespray dust removal[J].Journal of Xi'an University of Science and Technology,2019,(02):249-255.[doi:10.13800/j.cnki.xakjdxxb.2019.0210 ]
点击复制

远程喷雾降尘两相射流流场研究(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2019年02期
页码:
249-255
栏目:
出版日期:
2019-04-05

文章信息/Info

Title:
Two-phase jet flow field of remotespray dust removal
文章编号:
1672-9315(2019)02-0249-07
作者:
姜 华郭芮伶朱江涛
(西安科技大学 能源学院,陕西 西安 710054)
Author(s):
JIANG HuaGUO Rui-lingZHU Jiang-tao
(College of Energy Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)
关键词:
矿山环境 数值模拟 远程喷雾降尘 两相流
Keywords:
mine environment numerical simulation remote spray dust removal two-phase flow
分类号:
TD 724
DOI:
10.13800/j.cnki.xakjdxxb.2019.0210
文献标志码:
A
摘要:
远程喷雾降尘是基于环保理念广泛应用于城镇除霾及矿山除尘的常见方式。为提高喷雾降尘效果,基于SOLIDWORKS与ICEM联合建立远程喷雾机几何模型,选用标准k-ε湍流模型以及DPM计算模型构造射流流场模型,利用FLUENT软件研究喷嘴出水口孔径与水流入射角对雾粒雾化浓度及射程的影响。在定水泵功率和定风机功率条件下,分别对喷嘴出水口直径为2,4,6,8和10 mm的5种工况以及水流入射角在0°,15°,30°,45°,60°和75°的6种工况进行数值模拟研究,分析两相射流流场特性,得出雾粒雾化浓度与射程变化规律。结果表明:在定水泵功率和定风机功率,变喷嘴出水口直径和变水流入射角工况下,分别在喷嘴出口孔径为4mm和水流入射角为60°时,喷嘴雾粒分散度及密度分布比较理想且射程达到最大,雾化除尘效果较好。
Abstract:
Remote spray is a common way of dust removal based on the concept of environmental protection widely used in urban de-haze and mine dust removal.In order to improve the spray dust removal effect,the geometric model of remote spray was established by the union of SOLIDWORKS and ICEM,and a standard k-ε turbulence flow model and DPM calculation model were selected to construct a jet flow field of spray.The influence of the nozzle outlet diameter and the incident angle on the flow field fog particle distribution law and range was researched by the software FLUENT.Under the condition of constant pump power and fan power,numerical simulation was respectively carried out when the nozzle outlet diameter are 2,4,6,8 and 10 mm and the incident angle of water flow are 0°,15°,30°,45°,60° and 75°.The law of atomizing concentration of fog particle and range variation was obtained by analyzing the characteristics of two-phase jet flow field.The simulation results show under the working conditions of constant water pump power,constant fan power,variable nozzle outlet aperture and variable water flow incident angle,when the nozzle outlet diameter and the water flow incident angle are 4 mm and 60°,respectively,the fog particle dispersion and distribution density are relatively ideal,the range of water spraying is maximized,and the atomization dust removal has a better effect.

参考文献/References:


[1] Fox R D,Derksen R C,Zhu H,et al.History of air-blast sprayer development and future prospects[J].2008,51(2):405-410.
[2]王宝玉.哈尔乌素露天煤矿降尘措施[J].露天采矿技术,2016,31(1):78-80,83. WANG Bao-yu.Dust-suppression measures in Ha'erwusu open-pit coal mine[J].Opencast Mining Technology,2016,31(1):78-80,83.
[3]刘辉辉,邹 伟,徐 超.煤矿综采面喷雾除尘机理[J].山东煤炭科技,2010(2):212-213. LIU Hui-hui,ZOU Wei,XU Chao.Spray dedusting mechanism of fully mechanized coal mining face[J].Shandong Coal Science and Technology,2010(2):212-213.
[4]Schmehl R.Advanced modeling of droplet deformation and breakup for CFD analysis of mixture preparation[J].American Journal of Veterinary Research,2002,51(9):1459-1463.
[5]Salyani M,Koo Y M,Sweeb R D.Spray application variables affect air velocity and deposition characteristics of a tower sprayer[J].Proceedings of the Florida State Horticultural Society,2017,35(1):416-425.
[6]Farooq M,Salyani M.Spray penetration into the citrus tree canopy from two air-carrier sprayers[J].Transactions of the Asae Online,2002,45(5):732.
[7]Salyani M,Farooq M,Sweeb R D.Spray deposition and mass balance in citrus orchard applications[J].Transactions of the Asabe,2007,50(6):1963-1969.
[8]戴奋奋.风送喷雾机风量的选择与计算[J].植物保护,2008,34(6):124-127. DAI Fen-fen.Selection and calculation of the blowing rate of air-assisted sprayers[J].Plant Protection,2008,34(6):124-127.
[9] Pergher G,Gubiani R,Srs C,et al.Assessment of spray deposition and recycling rate in the vineyard from a new type of air-assisted tunnel sprayer[J].Crop Protection,2013,45(3):6-14.
[10]Lee S,Park S.Spray atomization characteristics of a GDI injector equipped with a group-hole nozzle[J].Fuel,2014,137:50-59.
[11]Qiu B,Ma J,Deng B,et al.Experiment on mixing performance of on-line mixing spray system[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(17):78-85.
[12]Whitney J D,Salyani M,Churchill D B,et al.A field investigation to examine the effects of sprayer type,ground speed,and volume rate on spray deposition in Florida citrus[J].Journal of Agricultural Engineering Research,1989,42(4):275-283.
[13]Payri R,Tormos B,Salvador F J,et al.Spray droplet velocity characterization for convergent nozzles with three different diameters[J].Fuel,2008,87(15-16):3176-3182.
[14]王宝中, 孙秋爽.井下除尘器组合喷嘴喷雾效果分析[J].机床与液压,2017(4): 72-75,114. WANG Bao-zhong,SUN Qiu-shuang.Spray effect analysis of the multi-jet[J].Machine Tool & Hydraulics,2017,45(4):72-75,114.
[15]杨敏官,闫龙龙,王育立,等.喷嘴入口条件对微液滴生成的影响[J].排灌机械工程学报,2015,33(3):226-232. YANG Min-guan,YAN Long-long,WANG Yu-li,et al.Effects of nozzle inlet conditions on micro-droplet formation[J].Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(3):226-232.
[16]Endalew A M,Debaer C,Rutten N,et al.A new integrated CFD modelling approach towards air-assisted orchard spraying[J].Computers & Electronics in Agriculture,2010,71(2):128-136.
[17]何雄奎,何 娟.果园喷雾机风速对雾滴的沉积分布影响研究[J].农业工程学报,2002,18(4):75-77. HE Xiong-kui,HE Juan.Effect of wind velocity from orchard sprayer on droplet deposit and distribution[J].Transactions of the Chinese Society of Agricultural Engineering,2002,18(4):75-77.
[18]陈建泽,宋淑然,孙道宗,等.远射程风送式喷雾机气流场分布及喷雾特性试验[J].农业工程学报,2017,33(24):72-79. CHEN Jian-ze,SONG Shu-ran,SUN Dao-zong,et al.Test on airflow field and spray characteristics for long-range air-blast sprayer[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(24):72-79.
[19]赵丽娟,田 震,王 野.采煤机外喷雾系统数值模拟研究[J].煤炭学报,2014,39(6):1172-1176. ZHAO Li-juan,TIAN Zhen,WANG Ye.Numerical simulation of shearer external spray system[J].Journal of China Coal Society,2014,39(6):1172-1176.
[20]陈 曦,葛少成.基于Fluent软件的高压喷雾捕尘技术数值模拟与应用[J].中国安全科学学报,2013,23(8):144-149. CHEN Xi,GE Shao-cheng.Numerical simulation of high-pressure spray coal dust capture technology based on fluent software and its application[J].China Safety Science Journal,2013,23(8):144-149.
[21]Lefebvre A H,Wang X F,Martin C A.Spray characteristics of aerated-Liquid pressure atomizers[J].Journal of Propulsion & Power,2011,4(4):293-298.
[22]Sumner P E. Experiences with pecan air blast sprayers[C]//2004 ASAE Annual Meeting.American Society of Agricultural and Biological Engineers,041089.
[23]汤伯敏,林光武,高崇义,等.二相流喷雾技术的研究[J].农业工程学报,2001,17(5):59-62. TANG Bo-min,LIN Guang-wu,GAO Chong-yi,et al.Study on two-phase flow spraying technique[J].Transactions of the Chinese Society of Agricultural Engineering,2001,17(5):59-62.
[24]林鸿亮,刘道银,刘 猛,等.喷嘴雾化特性的试验及数值模拟[J].动力工程学报,2015,35(12):998-1005. LIN Hong-liang,LIU Dao-yin,LIU Meng,et al.Experimental study and numerical simulation on spray characteristics of different nozzles[J].Journal of Chinese Society of Power Engineering,2015,35(12):998-1005.
[25]刘明嘉.喷雾液滴撞壁模拟研究[D].武汉:武汉理工大学,2012. LIU Ming-jia.The study and simulation of the behavior of a droplet during the spray wall impingement[D].Wuhan:Wuhan University of Technology,2012.
[26]魏 南.气液两相流喷嘴的射流雾化机理的研究[D].济南:山东建筑大学,2014. WEI Nan.Research of jet atomization mechanism on gas-liquid two-phase flow nozzle[D].Jinan:Shandong Jianzhu University,2014.

相似文献/References:

[1]于志金,翟小伟,马灵军,等.工作面回撤期间煤自燃高温区域演化规律模拟[J].西安科技大学学报,2016,(05):628.[doi:10.13800/j.cnki.xakjdxxb.2016.0504]
 YU Zhi-jin,ZHAI Xiao-wei,MA Ling-jun,et al.Evolutional law simulation of high temperature zone of coal spontaneous combustion during retreating period of mining face[J].Journal of Xi'an University of Science and Technology,2016,(02):628.[doi:10.13800/j.cnki.xakjdxxb.2016.0504]
[2]马雄德,王苏健,蒋泽泉,等.神南矿区采煤导水裂隙带高度预测[J].西安科技大学学报,2016,(05):664.[doi:10.13800/j.cnki.xakjdxxb.2016.0509]
 MA Xiong-de,WANG Su-jian,JIANG ZE-quan,et al.Prediction on the height of water-flowing fractured zone in southern Shenmu mine[J].Journal of Xi'an University of Science and Technology,2016,(02):664.[doi:10.13800/j.cnki.xakjdxxb.2016.0509]
[3]刘 磊,王伟峰,冯玉龙.FLUENT的浆液远距离输送数值模拟研究[J].西安科技大学学报,2014,(02):135.
 LIU Lei,WANG Wei-feng,FENG Yu-long.Numerical simulation of long-distance slurry transport based on FLUENT[J].Journal of Xi'an University of Science and Technology,2014,(02):135.
[4]李先贵,李 凯.带压开采下组煤底板采动破坏深度现场实测及模拟研究[J].西安科技大学学报,2014,(03):261.
 LI Xian-gui,LI Kai.Field measurement and numerical simulation on the depth of floor damage in lower coal mining with water pressure[J].Journal of Xi'an University of Science and Technology,2014,(02):261.
[5]刘巨海.水对灰质泥岩隧道围岩稳定性影响研究[J].西安科技大学学报,2014,(03):302.
 LIU Ju-hai.Influence of water on the stability of surrounding rock in lime mudstone tunnel[J].Journal of Xi'an University of Science and Technology,2014,(02):302.
[6]吕文宏.覆岩顶板导水裂隙带发育高度模拟与实测[J].西安科技大学学报,2014,(03):309.
 LV Wen-hong.Measure and simulation for developmentheight of water conducted crack zone in overburden roof[J].Journal of Xi'an University of Science and Technology,2014,(02):309.
[7]樊永山,张胜云.近距离煤层群开采下煤层开切眼合理位置的确定[J].西安科技大学学报,2015,(02):165.[doi:10.13800/j.cnki.xakjdxxb.2015.0205]
 FAN Yong-shan,ZHANG Sheng-yun.Determination of reasonable position of cut open for lower layer in miningofthe close coal seams[J].Journal of Xi'an University of Science and Technology,2015,(02):165.[doi:10.13800/j.cnki.xakjdxxb.2015.0205]
[8]李春杰,刘银先,高红彬,等.“三软”煤层采场覆岩运动及应力分布规律[J].西安科技大学学报,2015,(02):187.[doi:10.13800/j.cnki.xakjdxxb.2015.0209]
 LI Chun-jie,LIU Yin-xian,GAO Hong-bin,et al.Overlying strata movement and stress distribution law in the“three-soft”coal seam[J].Journal of Xi'an University of Science and Technology,2015,(02):187.[doi:10.13800/j.cnki.xakjdxxb.2015.0209]
[9]戴 俊,秦立科.微波照射下岩石损伤细观模拟分析[J].西安科技大学学报,2014,(06):652.[doi:10.13800/j.cnki.xakjdxxb.2014.0604]
 DAI Jun,QIN Li-ke.Meso-simulation of rock damage under microwave irradiation[J].Journal of Xi'an University of Science and Technology,2014,(02):652.[doi:10.13800/j.cnki.xakjdxxb.2014.0604]
[10]孟然,徐经苍,魏攀,等.顺层瓦斯抽放钻孔渗流场数值模拟及应用[J].西安科技大学学报,2015,(05):561.[doi:10.13800/j.cnki.xakjdxxb.2015.0506]
 MENG Ran,XU Jing-cang,WEI Pan,et al.Numerical simulation and application of drilling gas drainage holes along seam in current seam[J].Journal of Xi'an University of Science and Technology,2015,(02):561.[doi:10.13800/j.cnki.xakjdxxb.2015.0506]

备注/Memo

备注/Memo:
收稿日期:2018-11-18 责任编辑:杨泉林
基金项目:国家自然科学基金(51404191)
通信作者:姜 华(1973-),女,河北良香人,博士,副教授,E-mail:jianghua10@xust.edu.cn
更新日期/Last Update: 2019-03-30