[1]邓广哲,郑 锐,徐 东.大采高综采端头悬顶水力切顶控制机理[J].西安科技大学学报,2019,(02):224-233.[doi:10.13800/j.cnki.xakjdxxb.2019.0207 ]
 DENG Guang-zhe,ZHENG Rui,XU Dong.Control mechanism of hydraulic roof cutting for end suspended roof of fully-mechanized mining face with large mining height[J].Journal of Xi'an University of Science and Technology,2019,(02):224-233.[doi:10.13800/j.cnki.xakjdxxb.2019.0207 ]
点击复制

大采高综采端头悬顶水力切顶控制机理(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2019年02期
页码:
224-233
栏目:
出版日期:
2019-04-05

文章信息/Info

Title:
Control mechanism of hydraulic roof cutting for end suspended roof of fully-mechanized mining face with large mining height
文章编号:
1672-9315(2019)02-0224-10
作者:
邓广哲12郑 锐12徐 东12
(1.西安科技大学 能源学院,陕西 西安 710054; 2.西安科技大学西部矿井开采及灾害防治教育部重点实验室,陕西 西安 710054)
Author(s):
DENG Guang-zhe12ZHENG Rui12XU Dong12
(1.College of Energy Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 2.Key Laboratory of Western Mine Exploitation and Hazard Prevention,Ministry of Education,Xi'an University of Science and Technology,Xi'an 710054,China)
关键词:
矿业工程 端头顶板 水压致裂 定向裂隙 裂隙演化
Keywords:
mining engineering end roof hydraulic fracturing directional fracture cracks evolution
分类号:
TD 327.2
DOI:
10.13800/j.cnki.xakjdxxb.2019.0207
文献标志码:
A
摘要:
为解决大采高综采端头顶板难垮问题,以陕北侏罗纪典型煤层条件为背景,结合理论分析、数值模拟与现场试验,对顶板破坏时的人工干预破断裂隙演化与其采动应力耦合作用规律进行研究。通过对顶板割缝损伤弱化模型的研究,揭示水压裂隙控制顶板的破断规律,给出定向割缝的控制参数; 基于此,构建定向裂隙与采动应力耦合模型,分析水压切割定向裂隙控制顶板破断的裂隙演化规律,提出水压致裂切割定向裂隙控制端头顶板破断的技术方案与工艺方法。结果表明:顶板水压致裂后,顶板破坏类型由拉伸破坏转变为拉剪复合破坏,定向裂隙尖端形成了翼型裂纹与反翼型裂纹,顶板破断角由45°变成56°,煤壁塑性区、片帮深度均减小; 现场试验后,初次来压步距为32 m,周期来压步距为12.2 m.
Abstract:
In order to solve the issue of difficult roof collapse at the end of fully mechanized coal mining with large mining height,taking a typical coal seam in the Jurassic period in northern Shaanxi as the background,the artificial interference of the evolution of broken fracture and the law of coupling action of mining stress during the roof failure were studied by theoretical analysis,numerical simulation and field test.The investigation into the damage weakening model of roof joint revealed that the breaking rule of roof is controlled by hydraulic fracturing crack.Based on this,we gave the control parameters of directional cutting joint.The coupling model of directional fracture and mining stress was built,the fracture evolution law of hydraulic fracturing and cutting directional fissure-controlled roof fracture were analyzed,and the technical scheme and method of controlling end-plate fracture by directional fracture in hydraulic fracturing cutting were put forward.The results show that after roof hydraulic cracking,the failure type of roof is changed from tensile failure to tensile shear composite failure,and the wing crack and reverse wing are formed at the crack tip of directional crack,the broken angle of roof changes from 45° to 56°,and both the plastic zone of coal wall and the depth of roof decrease.After the field test,the initial pressure step distance is 32 m,and the periodic pressure step distance is 12.2 m.

参考文献/References:


[1] 孙守山,宁 宇,葛 钧.波兰煤矿坚硬顶板定向水力压裂技术[J].煤炭科学技术,1999,27(2):51-52. SUN Shou-shan,NING Yu,GE Jun.The technology of hard roof directional hydraulic fracturing in Poland[J].Coal Science and Technology,1999,27(2): 51-52.
[2]刘洪伟,李君利.坚硬顶板弱化技术综述[J].煤炭技术,2009,28(2):50-52. LIU Hong-wei,LI Jun-li.Integrated description of hard roof weakening technology[J].Coal Technology,2009,28(2): 50-52.
[3]郭德勇,商登莹,吕鹏飞,等.深孔聚能爆破坚硬顶板弱化试验研究[J].煤炭学报,2013,38(7):1149-1153. GUO De-yong,SHANG Deng-ying,LV Peng-fei,et al.Experimental research of deep-hole cumulative blasting in hard roof weakening[J].Journal of China Coal Society,2013,38(7): 1149-1153.
[4]程小庆,王兆丰,李豪君.液态CO2相变致裂强制煤层顶板垮落技术[J].煤矿安全,2016,47(6):67-70. CHENG Xiao-qing,WANG Zhao-feng,LI Hao-jun.Liquid CO2 phase-transforming fracture technology in forcing coal seam roof collapse[J].Safety in Coal Mines,2016,47(6): 67-70.
[5]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010. QIAN Ming-gao,SHI Ping-wu,XU Jia-lin.Mining pressure and strata contro[M].Xuzhou:China University of Mining and Technology Press,2010.
[6]潘 岳,王志强,李爱武.初次断裂期间超前工作面坚硬顶板挠度、弯矩和能量变化的解析解[J].岩石力学与工程学报,2012,31(1):32-42. PAN Yue,WANG Zhi-qiang,LI Ai-wu.Analytic solutions of deflection,bending moment and energy change of tight roof of advanced working surface during initial fracturing[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(1): 32-42.
[7]李新元,马念杰,钟亚平,等.坚硬顶板断裂过程中弹性能量积聚与释放的分布规律[J].岩石力学与工程学报,2007,26(1):2786-2794. LI Xin-yuan,MA Nian-jie,ZHONG Ya-ping,et al.Storage and release regular of elastic energy distribution in tight roof fracturing[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(1): 2786-2794.
[8]潘 岳,顾士坦,杨光林.裂纹发生初始阶段的坚硬顶板内力变化和“反弹”特性分析[J].岩土工程学报,2015,37(5):860-870. PAN Yue,GU Shi-tan,YANG Guang-lin.Variation of internal force and rebound property of hard roof at initial stage of cracking[J].Chinese Journal of Geotechnical Engineering,2015,37(5): 860-870.
[9]闫少宏,宁 宇,康立军,等.用水力压裂处理坚硬顶板的机制及实验研究[J].煤炭学报,2000,25(1):32-35. YAN Shao-hong,NING Yu,KANG Li-jun,et al.Mechanism and experiment of dealing with hard roof by hydraulic fracturing[J].Journal of China Coal Society,2000,25(1): 32-35.
[10]康红普,冯彦军.定向水力压裂工作面煤体应力监测及其演化规律[J].煤炭学报,2012,37(12):1953-1959. KANG Hong-pu,FENG Yan-jun.Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution[J].Journal of China Coal Society,2012,37(12): 1953-1959.
[11]KANG Hong-pu,LV Hua-wen,GAO Fu-qiang,et al.Understanding mechanisms of destressing mining-induced stresses using hydraulic fracturing[J].International Journal of Coal Geology,2018,196: 19-28.
[12]邓广哲,王世斌,黄炳香.煤岩水压裂缝扩展行为特性研究[J].岩石力学与工程学报,2004,23(20):3489-3493. DENG Guang-zhe,WANG Shi-bin,HUANG Bing-xiang.Research on behavior character of crack development induced by hydraulic fracturing in coal-rockmass[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(20): 3489-3493.
[13]邓广哲,王有熙.煤层定向水压致裂机理研究[J].西安科技大学学报,2014,34(6):664-669. DENG Guang-zhe,WANG You-xi.Mechanism of directional hydraulic fracturing in coal seam[J].Journal of Xi'an University of Science and Technology,2014,34(6): 664-669.
[14]DENG Guang-zhe,ZHENG Rui.Reconstruction of 3D micro pore structure of coal and simulation of its mechanical properties[J].Advances in Materials Science and Engineering,Volume,2017,Article ID 5658742,9 pages.
[15]富 向,刘洪磊,杨天鸿,等.穿煤层钻孔定向水压致裂的数值仿真[J].东北大学学报(自然科学版),2011,32(10):1480-1483. FU Xiang,LIU Hong-lei,YANG Tian-hong,et al.Simulating directional hydraulic fracturing through coal seam drilling hole[J].Journal of Northeastern University(Natural Science),2011,32(10): 1480-1483.
[16]徐幼平,林柏泉,翟 成,等.定向水力压裂裂隙扩展动态特征分析及其应用[J].中国安全科学学报,2011,21(7):104-110. XU You-ping,LIN Bai-quan,ZHAI Cheng,et al.Analysis on dynamic characteristics of cracks extension in directional hydraulic fracturing and its application[J].China Safety Science Journal,2011,21(7): 104-110.
[17]李全贵,翟 成,林柏泉,等.定向水力压裂技术研究与应用[J]. 西安科技大学学报,2011,31(6):735-739. LI Quan-gui,ZHAI Cheng,LIN Bai-quan,et al.Research and application of directional hydraulic fracturing technology[J].Journal of Xi'an University of Science and Technology,2011,31(6): 735-739.
[18]GUO Tian-kui,Rui Zhen-hua,QU Zhan-qing,et al.Experimental study of directional propagation of hydraulic fracture guided by multi-radial slim holes[J].Journal of Petroleum Science and Engineering,2018,166: 592-601.
[19]冯彦军,康红普.定向水力压裂控制煤矿坚硬难垮顶板试验[J].岩石力学与工程学报,2012,31(6):1148-1156. FENG Yan-jun,KANG Hong-pu.Test on hard and stable roof control by means of directional hydraulic fracturing in coal mine[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(6): 1148-1156.
[20]黄炳香,王友壮.顶板钻孔割缝导向水压裂缝扩展的现场试验[J].煤炭学报,2015,40(9):2002-2008. HUANG Bing-xiang,WANG You-zhuang.Field investigation on crack propagation of directional hydraulic fracturing in hard roof[J].Journal of China Coal Society,2015,40(9): 2002-2008.
[21]HUANG Bing-xiang,LIU Jiang-wei,ZHANG Quan.The reasonable breaking location of overhanging hard roof for directional hydraulic fracturing to control strong strata behaviors of gob-side entry[J].International Journal of Rock Mechanics and Mining Sciences,2018,103: 1-11.
[22]秦 松,窦林名,秦飞龙,等.坚硬顶板水力致裂最佳割缝位置的模拟[J].煤矿安全,2014,45(5):151-154. QIN Song,DOU Lin-ming,QIN Fei-long,et al.Simulation of hydraulic fracture best slotted position of hard roof[J].Safety in Coal Mines,2014,45(5): 151-154.
[23]张力民.基于宏-细观缺陷耦合的裂隙岩体动态损伤本构模型研究[D].北京:北京科技大学,2015. ZHANG Li-min.Study on the dynamic damage constitutive model for the cracked rock mass basing on coupling the macroscopic and mesoscopic flaws[D].Beijing: University of Science and Technology Beijing,2015.
[24]Lee S,Ravichandran G.Crack initiation in brittle solids under multiaxial compression[J].Engineering Fracture Mechanics,2003,70(13): 1645-1658.
[25]刘红岩,邢闯锋,张力民.双轴应力下非贯通节理岩体压缩损伤本构模型[J].岩土力学,2016,37(9):2610-2617. LIU Hong-yan,XING Chuang-feng,ZHANG Li-min.A bi-axial compression damage constitutive model for rock mass with non-persistent joints[J].Rock and Soil Mechanics,2016,37(9): 2610-2617.
[26]王 开,康天合,李海涛,等.坚硬顶板控制放顶方式及合理悬顶长度的研究[J].岩石力学与工程学报,2009,28(11):2320-2328. WANG Kai,KANG Tian-he,LI Hai-tao,et al.Study of control caving methods and reasonable hanging roof length on hard roof[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(11): 2320-2328.
[27]黄晋兵.王台矿井综采工作面处理坚硬顶板技术[J].煤炭科学技术,2008,36(9):4-8. HUANG Jin-bing.Hard roof treatment technology for fully mechanized longwall coal mining face in Wangtai Mine[J].Coal Science and Technology,2008,36(9): 4-8.

相似文献/References:

[1]张 杰,杨 涛,索永录,等.基于耦合评价的安山煤矿顶板突水预测模型研究[J].西安科技大学学报,2018,(04):569.[doi:10.13800/j.cnki.xakjdxxb.2018.0408 ]
 ZHANG Jie,YANG Tao,SUO Yong-lu,et al.Forecast model for roof water inrush in Anshan coal mine based on coupling evaluation[J].Journal of Xi'an University of Science and Technology,2018,(02):569.[doi:10.13800/j.cnki.xakjdxxb.2018.0408 ]
[2]李谦益.改进可拓层次法在煤层顶板稳定性评价中的应用[J].西安科技大学学报,2018,(04):643.[doi:10.13800/j.cnki.xakjdxxb.2018.0418 ]
 LI Qian-yi.Application of EAHP in stability evaluation of coal seam roof[J].Journal of Xi'an University of Science and Technology,2018,(02):643.[doi:10.13800/j.cnki.xakjdxxb.2018.0418 ]
[3]郭爱华.煤层气井潜在酸联合加砂压裂增产机理及应用[J].西安科技大学学报,2018,(04):650.[doi:10.13800/j.cnki.xakjdxxb.2018.0419 ]
 GUO Ai-hua.Mechanism and application of potential acid combined sand and fracturing in CBM wells[J].Journal of Xi'an University of Science and Technology,2018,(02):650.[doi:10.13800/j.cnki.xakjdxxb.2018.0419 ]
[4]王亚超,袁 泉,肖 旸,等.水分对白皎无烟煤氧化过程放热特性的影响[J].西安科技大学学报,2018,(05):721.[doi:10.13800/j.cnki.xakjdxxb.2018.0505]
 WANG Ya-chao,YUAN Quan,XIAO Yang,et al.Effect of moisture on exothermic characteristics of oxidation process of Baijiao anthracite[J].Journal of Xi'an University of Science and Technology,2018,(02):721.[doi:10.13800/j.cnki.xakjdxxb.2018.0505]
[5]柴 敬,杜文刚,袁 强,等.物理模型试验光纤传感技术测试方法分析[J].西安科技大学学报,2018,(05):728.[doi:10.13800/j.cnki.xakjdxxb.2018.0506]
 CHAI Jing,DU Wen-gang,YUAN Qiang,et al.Analysis of test method for physical model test based on optical fiber sensing technology detection[J].Journal of Xi'an University of Science and Technology,2018,(02):728.[doi:10.13800/j.cnki.xakjdxxb.2018.0506]
[6]刘志军,杨 栋,胡耀青,等.油页岩原位热解孔隙结构演化的低温氮吸附分析[J].西安科技大学学报,2018,(05):737.[doi:10.13800/j.cnki.xakjdxxb.2018.0507]
 LIU Zhi-jun,YANG Dong,HU Yao-qing,et al.Low temperature nitrogen adsorption analysis of pore structure evolution in in-situ pyrolysis of oil shale[J].Journal of Xi'an University of Science and Technology,2018,(02):737.[doi:10.13800/j.cnki.xakjdxxb.2018.0507]
[7]郭 军,刘 荫,金永飞,等.矿井胶带火灾巷道环境多参数时空演化规律[J].西安科技大学学报,2019,(01):21.[doi:10.13800/j.cnki.xakjdxxb.2019.0104 ]
 GUO Jun,LIU Yin,JIN Yong-fei,et al.Spatiotemporal evolution law of multiple parameters of roadway environment for rubber-belt fire in mine[J].Journal of Xi'an University of Science and Technology,2019,(02):21.[doi:10.13800/j.cnki.xakjdxxb.2019.0104 ]
[8]余学义,毛旭魏.近距离煤层重复采动对坡体稳定性的影响[J].西安科技大学学报,2019,(01):34.[doi:10.13800/j.cnki.xakjdxxb.2019.0106 ]
 YU Xue-yi,MAO Xu-wei.Influence of repeated mining of close distance coal seams on slope stability[J].Journal of Xi'an University of Science and Technology,2019,(02):34.[doi:10.13800/j.cnki.xakjdxxb.2019.0106 ]
[9]于 伟,李 振,刘莉君,等.煤泥浮选复合药剂开发及分选提质[J].西安科技大学学报,2019,(01):138.[doi:10.13800/j.cnki.xakjdxxb.2019.0120 ]
 YU Wei,LI Zhen,LIU Li-jun,et al.Development of compound reagent for coal slime flotation[J].Journal of Xi'an University of Science and Technology,2019,(02):138.[doi:10.13800/j.cnki.xakjdxxb.2019.0120 ]
[10]吴奉亮,李智胜,常心坦.矿井采空区漏风问题的迎风有限元求解技术及其应用[J].西安科技大学学报,2019,(02):234.[doi:10.13800/j.cnki.xakjdxxb.2019.0208 ]
 WU Feng-liang,LI Zhi-sheng,CHANG Xin-tan.Technology for problems caused by gob air leakage in coal mine based on upwind finite element method and its application[J].Journal of Xi'an University of Science and Technology,2019,(02):234.[doi:10.13800/j.cnki.xakjdxxb.2019.0208 ]

备注/Memo

备注/Memo:
收稿日期:2018-10-24 责任编辑:杨泉林
基金项目:陕西省“13115”科技创新工程重大科技专项(2009ZDKG57); 科技支疆重大专项(2014AB025); 陕西省教育科研自然科学重点项目(2015JS060)
通信作者:邓广哲(1965-),男,陕西扶风人,教授,博士生导师,E-mail:denggz203@126.com
更新日期/Last Update: 2019-03-30