[1]李亚清,史学强,张玉涛,等.热声效应及其应用研究进展[J].西安科技大学学报,2018,(06):919-930.[doi:10.13800/j.cnki.xakjdxxb.2018.0607]
 LI Ya-qing,SHI Xue-qiang,ZHANG Yu-tao,et al.Theories and applications of thermo-acoustic effects[J].Journal of Xi'an University of Science and Technology,2018,(06):919-930.[doi:10.13800/j.cnki.xakjdxxb.2018.0607]
点击复制

热声效应及其应用研究进展(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2018年06期
页码:
919-930
栏目:
出版日期:
2018-11-30

文章信息/Info

Title:
Theories and applications of thermo-acoustic effects
文章编号:
1672-9315(2018)06-0919-12
作者:
李亚清12史学强12张玉涛12杨超萍12张 静12
(1.西安科技大学 安全科学与工程学院,陕西 西安 710054; 2.陕西省工业过程安全与应急救援工程技术研究中心,陕西 西安 710054)
Author(s):
LI Ya-qing12SHI Xue-qiang12ZHANG Yu-tao12
(1.College of Safety Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 2.Shaanxi Engineering Research Center for Industrial Process Safety & Emergency Rescue,Xi'an 710054,China)
关键词:
热声效应 热声理论 热声应用 热声轰燃探测器 数值模拟
Keywords:
thermo-acoustic effect thermo-acoustic theory thermo-acoustic application thermoacoustic flashover detector numerical simulation
分类号:
TB 61
DOI:
10.13800/j.cnki.xakjdxxb.2018.0607
文献标志码:
A
摘要:
热声效应是一种热与声相互转化的现象,涉及复杂的非线性因素,而热声机械无运动部件,有着广阔的应用前景。为加深对热声效应的研究,文中首先介绍了热声理论的研究进展状况,分析了各个理论的局限性及适应性,接着从实验研究及数值模拟两方面总结了现有的研究方法及其取得的研究成果,之后详细阐述了热致声与声致冷2种效应的应用。最后,基于当前的研究现状,分析了热声理论在研究与应用方面存在的问题与遇到的挑战,讨论了热声转化的发展趋势。结果表明,建立科学的适用于大振幅热声效应的理论方法是发展推广热声效应的难点和重点,而数值模拟与实验研究的有效结合是推进热声理论发展的强有力手段,虽然目前热声机械还只停留在实验室研究,但凭借热声转换的独特优势,热声装置将会是清洁能源、航空航天、消防等行业的重要应用技术。
Abstract:
The thermo-acoustic effect means conversions between heat and sound which involves complex nonlinear factors.Thermo-acoustic machineries exhibits broad applications for having no moving parts.In this paper,theories regarding thermo-acoustic effect was firstly introduced,and their scopes of application and limitations were further analyzed.Then current methodologies and findings in thermo-acoustic effect was summarized from standpoints of experimental study and numerical simulation.Applications of the thermo-acoustic effect was set forth as well.On the basis of research actuality,problems and challenges of thermo-acoustic effect in development and application were analyzed.Meanwhile,the development trend of the conversion between heat and sound was discussed.Analysis results indicate that constructing theories and methods that can be applied to the large amplitude thermo-acoustic effect is difficulties and focus of thermo-acoustic effect.Nevertheless,the effective combinations of experimental study and numerical simulation is a powerful means to promote the development of the thermo-acoustic theory.Although the current thermo-acoustic machinery is still limited in laboratory scale,thermo-acoustic devices with the unique advantages of thermo-acoustic conversion will be an attractive technique in the fields of clean energy,aerospace,fire fighting,etc.

参考文献/References:


[1] Putnam A A,Dennis W R.A study of burner oscillations of the organ-pipe type[J].Trans ASME,1953,75(1):15-28.
[2]Sondhauss C.Ueber das tönen erhitzter röhren und die schwingungen der luft in P feifen von verschiedener gestalt[J].Annalen der Physik,1870,216(5):53-76.
[3]Rijke P L.Notizüber eine neue Art,die in einer an beiden enden offenen röhre enthaltene luft in schwingungen zu versetzen[J].Annalen Der Physik,1859,183(6):339-343.
[4]Ceperley P H.A pistonless stirling engine:the traveling wave heat engine[J].The Journal of the Acoustical Society of America,1979,66(5):1508-1513.
[5]Backhaus S,Swift G W.A thermoacoustic stirling heat engine[J].Nature,1999,399(6734):335.
[6]Feldman Jr K T.Review of the literature on sondhauss thermoacoustic phenomena[J].Journal of Sound and Vibration,1968,7(1):71-82.
[7]Rott N.Damped and thermally driven acoustic oscillations in wide and narrow tubes[J].Zeitschrift für angewandte Mathematik und Physik ZAMP,1969,20(2):230-243.
[8]Swift G W.A unifying perspective for some engines and refrigerators[J].Acoustical Society of America,2002:16-20.
[9]Symko O G,Abdel-Rahman E,Kwon Y S,et al.Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics[J].Microelectronics Journal,2004,35(2):185-191.
[10]Symko O G.Acoustic approach to thermal management:miniature thermo acoustic engines[C]//Thermal and Thermomechanical Phenomena in Electronics Systems,2006.ITHERM'06.The Tenth Intersociety Conference on.IEEE,2006.
[11]Buda-Ortins K E.Prototype design for thermoacoustic flashover detector[D].College Park:University of Maryland,2012.
[12]Hamburger K A.Optimization and implementation of a thermoacoustic flashover detector[D].College Park:University of Maryland,2013.
[13]Jeffrey Z T.Response of a thermoacoustic flashover detector to thermal radiation[D].College Park:University of Maryland,2014.
[14]Strutt,John William.The theory of sound[M].Macmillan,1944.
[15]Rott N.Thermoacoustics[J].Advances in Applied Mechanics,1980,20:135-175.
[16]Keolian R M,Garrett S L,Garrett S L.Thermoacoustics:a unifying perspective for some engines and refrigerators,second edition[J].Journal of the Acoustical Society of America,2018,113(5):2379-2381.
[17]Worlikar A S,Knio O M.Numerical simulation of a thermoacoustic refrigerator:Ⅰ.Unsteady adiabatic flow around the stack[J].Journal of Computational Physics,1996,127(2):424-451.
[18]Worlikar A S,Knio O M,Klein R.Numerical simulation of a thermoacoustic refrigerator:Ⅱ.Stratified flow around the stack[J].Journal of Computational Physics,1998,144(2):299-324.
[19]韩 飞,岳国森.Rijke热声振荡的非线性效应[J].声学学报,1997,22(3):249-254. HAN Fei,YUE Guo-sen.Nonlinear effect of rijke thermoacoustic oscillation[J].Acta Acustica,1997,22(3):249-254.
[20]Hamilton M F,Ilinskii Y A,Zabolotskaya E A.Nonlinear two-dimensional model for thermoacoustic engines[J].The Journal of the Acoustical Society of America,2002,111(5):2076-2086.
[21]Hamilton M F,Ilinskii Y A,Zabolotskaya E A.Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width[J].The Journal of the Acoustical Society of America,2003,113(1):153-160.
[22]Gong L J,Penelet G,Picart P.Experimental and theoretical study of density fluctuations near the stack ends of a thermoacoustic prime mover[J].International Journal of Heat and Mass Transfer,2018,126:580-590.
[23]Kuzuu K,Hasegawa S.Effect of non-linear flow behavior on heat transfer in a thermoacoustic engine core[J].International Journal of Heat and Mass Transfer,2017,108:1591-1601.
[24]Kuzuu K,Hasegawa S.Numerical investigation of heated gas flow in a thermoacoustic device[J].Applied Thermal Engineering,2017,110:1283-1293.
[25]Taconis K W.Vapor liquid equilibrium of solutions of 3 He in 4 He[J].Phy.Rev.,1949,75:738.
[26]Napolitano M,Romano R,Dragonetti R.Open-cell foams for thermoacoustic applications[J].Energy,2017,138:147-156.
[27]Alcock A C,Tartibu L K,Jen T C,Experimental investigation of an adjustable thermoacoustically-driven thermoacoustic refrigerator[J].International Journal of Refrigeration,2018,94:71-86.
[28]Yahya S G,Mao X A,Jaworski A J.Experimental investigation of thermal performance of random stack materials for use in standing wave thermoacoustic refrigerators[J].International Journal of Refrigeration,2017,75:52-63.
[29]Yazaki T,Iwata A,Maekawa T,et al.Traveling wave thermoacoustic engine in a looped tube[J].Physical Review Letters,1998,81(15):3128-3131.
[30]Moreau S,Bailliet H,Vali re J C.Effect of a stack on Rayleigh streaming cells investigated by laser Doppler velocimetry for application to thermoacoustic devices[J].The Journal of the Acoustical Society of America,2009,125(6):3514-3517.
[31]Jaworski A J,Mao X,Mao X,et al.Entrance effects in the channels of the parallel plate stack in oscillatory flow conditions[J].Experimental Thermal and Fluid Science,2009,33(3):495-502.
[32]Aben P C H,Bloemen P R,Zeegers J C H.2-D PIV measurements of oscillatory flow around parallel plates[J].Experiments in Fluids,2009,46(4):631-641.
[33]Shi L,Yu Z,Jaworski A J.Application of laser-based instrumentation for measurement of time-resolved temperature and velocity fields in the thermoacoustic system[J].International Journal of Thermal Sciences,2010,49(9):1688-1701.
[34]Wang B,Qiu L,Sun D,et al.Visualization observation of onset and damping behaviors in a traveling-wave thermoacoustic engine by infrared imaging[J].International Journal of Heat and Mass Transfer,2011,54(23-24):5070-5076.
[35]Mao X,Yu Z,Jaworski A J,et al.PIV studies of coherent structures generated at the end of a stack of parallel plates in a standing wave acoustic field[J].Experiments in Fluids,2008,45(5):833-846.
[36]Shi L,Yu Z,Jaworski A J.Investigation into the Strouhal numbers associated with vortex shedding from parallel-plate thermoacoustic stacks in oscillatory flow conditions[J].European Journal of Mechanics-B/Fluids,2011,30(2):206-217.
[37]Babaei H,Siddiqui K.Design and optimization of thermoacoustic devices[J].Energy Conversion and Management,2008,49(12):3585-3598.
[38]Trapp A C,Zink F,Prokopyev O A,et al.Thermoacoustic heat engine modeling and design optimization[J].Applied Thermal Engineering,2011,31(14-15):2518-2528.
[39]Hireche O,Weisman C,Baltean-Carl s D,et al.Numerical model of a thermoacoustic engine[J].Comptes rendus M canique,2010,338(1):18-23.
[40]Swift G W,Ward W C.Simple harmonic analysis of regenerators[J].Journal of Thermophysics and Heat Transfer,1996,10(4):652-662.
[41]Zhang X Q,Li Q,Guo F Z.Numerical analysis on thermoacoustic engine using network method[J].Chinese Journal of Acoustics,2003,22(4):166-175.
[42]Lycklama Nijeholt J A,Tijani M E H,Spoelstra S.Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics[J].The Journal of the Acoustical Society of America,2005,118(4):2265-2270.
[43]Yu G Y,Luo E C,Dai W,et al.Study of nonlinear processes of a large experimental thermoacoustic-Stirling heat engine by using computational fluid dynamics[J].Journal of Applied Physics,2007,102(7):74901.
[44]Skaria M,Rasheed K K A,Shafi K A,et al.Simulation studies on the performance of thermoacoustic prime movers and refrigerator[J].Computers & Fluids,2015,111:127-136.
[45]Zink F,Vipperman J,Schaefer L.CFD simulation of a thermoacoustic engine with coiled resonator[J].International Communications in Heat and Mass Transfer,2010,37(3):226-229.
[46]Zink F,Vipperman J,Schaefer L.CFD simulation of thermoacoustic cooling[J].International Journal of Heat and Mass Transfer,2010,53(19-20):3940-3946.
[47]Rogoziński K,Nowak I,Nowak G.Modeling the operation of a thermoacoustic engine[J].Energy,2017,138:249-256.
[48]Belaid K N,Hireche O.Influence of heat exchangers blockage ratio on the performance of thermoacoustic refrigerator[J].International Journal of Heat and Mass Transfer,2018,127:834-842.
[49]Chen Y,Liu X,Zhang X Q,et al.Thermoacoustic simulation with lattice gas automata[J].Journal of Applied Physics,2004,95(8):4497-4499.
[50]张晓青,吴迎文,张 稳,等.热声热机声场的格子气分析[J].工程热物理学报,2010,31(2):185-188. ZHANG Xiao-qing,WU Ying-wen,ZHANG Wen,et al.Lattic gas analyses of thermo-acoustic fields[J].Journal of Engineering Thermophysics,2010,31(2):185-188.
[51]Rahman A A,ZHANG X.Prediction of oscillatory heat transfer coefficient for a thermoacoustic heat exchanger through artificial neural network technique[J].International Journal of Heat and Mass Transfer,2018,124:1088-1096.
[52]Peng Y H,Feng H Y,Mao X A.Optimization of standing-wave thermoacoustic refrigerator stack using genetic algorithm[J].International Journal of Refrigeration,2018,92:246-255.
[53]Direk S.Design of a mini thermo-acoustic refrigerator[R].Monterey,California:Naval Postgraduate School,2001.
[54]Petrina D E.Performance measurement of a mini thermoacoustic refrigerator and associated drivers[D].Monterey:Naval Postgraduate School,2002.
[55]Hofler T J.Thermoacoustic refrigerator design and performance[J].Thesis-University of Califormia,1986.
[56]胡鹏.高频微型声驱动热声制冷机的理论探索与实验研究[D].北京:中国科学院理化技术研究所,2007. HU Peng.Theoretical approach and development on a high frequency miniature acoustic-driven thermoacoustic refrigerator[D].Beijing:Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,2007.
[57]Garrett S L,Adeff J A,Hofler T J.Thermoacoustic refrigerator for space applications[J].Journal of Thermophysics and Heat Transfer,1993,7(4):595-599.
[58]Ballister S C,McKelvey D J.Shipboard electronics thermoacoustic cooler[D].Monterey:Naval Postgraduate School,1995.
[59]余国瑶.热声发动机自激振荡过程及热声转换特性研究[D].北京:中国科学院研究生院,2008. YU Guo-yao.Study of spontaneous oscillation and thermoacoustic conversion characteristics of thermoacoustic heat engines[D].Beijing:Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,2008.
[60]Li D H,Chen Y Y,Luo E C,et al.Study of a liquid-piston traveling-wave thermoacoustic heat engine with different working gases[J].Energy,2014,74:158-163.
[61]Radebaugh R.Development of a thermoacoustically driven orifice pulse tube refrigerator[C]//Proc.of the Interagency Meeting on Crocoolers,Plymouth MA,1990.
[62]Wollan J J,Swift G W,Backhaus S N,et al.Development of a thermoacoustic natural gas liquefier[R].Los Alamos National Laboratory,2002.
[63]Arman B,Wollan J,Kotsubo V,et al.Operation of thermoacoustic stirling heat engine driven large multiple pulse tube refrigerators[C]//Cryocoolers 13.Springer,Boston,MA,2005:181-188.
[64]Xu J Y,Hu J Y,ZHANG L M,et al.Numerical investigation on a looped thermoacoustically-driven cryocooler for natural gas liquefaction[J].Energy Procedia,2017,105:1725-1729.
[65]Jin T,Yang R,Wang Y,et al.Acoustic field characteristics and performance analysis of a looped travelling-wave thermoacoustic refrigerator[J].Energy Conversion and Management,2016,123:243-251.
[66]Sharify E M,Hasegawa S.Traveling-wave thermoacoustic refrigerator driven by a multistage traveling-wave thermoacoustic engine[J].Applied Thermal Engineering,2017,113:791-795.
[67]Chen R L.Design,construction,and measurement of a large solar powered thermoacoustic cooler[D].Philadelphia:Pennsylvania State University,2001.
[68]Backhaus S,Tward E,Petach M.Traveling-wave thermoacoustic electric generator[J].Applied Physics Letters,2004,85(6):1085-1087.
[69]Hu J Y,Luo E C,Dai W,et al.A heat-driven thermoacoustic cryocooler capable of reaching below liquid hydrogen temperature[J].Chinese Science Bulletin,2007,52(4):574-576.
[70]Wu Z,Dai W,Man M,et al.A solar-powered traveling-wave thermoacoustic electricity generator[J].Solar Energy,2012,86(9):2376-2382.
[71]Wu Z,Yu G,ZHANG L,et al.Development of a 3 kW double-acting thermoacoustic stirling electric generator[J].Applied Energy,2014,136:866-872.
[72]Bi T J,Wu Z H,ZHANG L M,et al.Development of a 5kW traveling-wave thermoacoustic electric generator[J].Applied Energy,2017,185:1355-1361.
[73]Hou M Y,Wu Z H,Yu G Y,et al.A thermoacoustic Stirling electrical generator for cold exergy recovery of liquefied nature gas[J].Applied Energy,2018,226:389-396.
[74]Xu J Y,Hu J Y,ZHANG L M,et al.Numerical investigation on a looped thermoacoustically-driven cryocooler for natural gas liquefaction[J].Energy Procedia,2017,105:1725-1729.
[75]Yang R,Wang Y,Jin T,et al.Development of a three-stage looped thermoacoustic electric generator capable of utilizing heat source below 120 ℃[J].Energy Conversion and Management,2018,155:161-168.
[76]Mumith J A,Makatsoris C,Karayiannis T G.Design of a thermoacoustic heat engine for low temperature waste heat recovery in food manufacturing:a thermoacoustic device for heat recovery[J].Applied Thermal Engineering,2014,65(1-2):588-596.
[77]Tsuda K,Ueda Y.Abrupt reduction of the critical temperature difference of a thermoacoustic engine by adding water[J].AIP Advances,2015,5(9):97173.
[78]Tsuda K,Ueda Y.Critical temperature of traveling-and standing-wave thermoacoustic engines using a wet regenerator[J].Applied Energy,2017,196:62-67.
[79]Saechan P,Jaworski A J.Thermoacoustic cooler to meet medical storage needs of rural communities in developing countries[J].Thermal Science and Engineering Progress,2018(7):164-175.
[80]Chen G B,Jin T.Experimental investigation on the onset and damping behavior of the oscillation in a thermoacoustic prime mover[J].Cryogenics,1999,39(10):843-846.
[81]汪双凤,西尾茂文,曾朝霞.热声发动机在低温余热利用方面的研究[J].化工进展,2007,26(3):448-451. WANG Shuang-feng,S.Nishio,ZENG Zhao-xia,Experimental investigation on thermo-acoustic engine[J].Chemical Industry and Engineering Progress,2007,26(3):448-451.

备注/Memo

备注/Memo:
收稿日期:2018-07-30 责任编辑:杨泉林
基金项目:国家自然科学基金(51774233,51604218,51404192); 陕西省自然科学基金(2018JZ5007,2018JM5121); 国家重点研发计划(2018YFC0807900)
通信作者:张玉涛(1982-),男,山东烟台人,副教授,E-mail:ytzhang@xust.edu.cn
更新日期/Last Update: 2018-11-15