[1]林柏泉,李 永,杨 凯,等.H2O和CH4在煤表面竞争吸附机理[J].西安科技大学学报,2018,(06):878-885918.[doi:10.13800/j.cnki.xakjdxxb.2018.0602]
 LIN Bai-quan,LI Yong,YANG Kai,et al.Competitive adsorption mechanism of H2O andCH4on coal surface[J].Journal of Xi'an University of Science and Technology,2018,(06):878-885918.[doi:10.13800/j.cnki.xakjdxxb.2018.0602]
点击复制

H2O和CH4在煤表面竞争吸附机理(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2018年06期
页码:
878-885918
栏目:
出版日期:
2018-11-30

文章信息/Info

Title:
Competitive adsorption mechanism of H2O andCH4on coal surface
文章编号:
1672-9315(2018)06-0878-08
作者:
林柏泉12李 永12杨 凯12孔 佳12张祥良12
(1.中国矿业大学 煤矿瓦斯与火灾防治教育部重点实验室,江苏 徐州 221116; 2.中国矿业大学 安全工程学院,江苏 徐州 221116)
Author(s):
LIN Bai-quan12LI Yong12YANG Kai12KONG Jia12ZHANG Xiang-liang12
(1.Key Laboratory of Coal Methane and Fire Control,Ministry of Education,China University of Mining and Technology,Xuzhou 221116,China; 2.School of Safety Engineering,China University of Mining and Technology,Xuzhou 221116,China)
关键词:
密度泛函理论 竞争吸附 吸附位 吸附能
Keywords:
density functional theory competitive adsorption adsorption site adsorption energy
分类号:
TD 712.6
DOI:
10.13800/j.cnki.xakjdxxb.2018.0602
文献标志码:
A
摘要:
为从微观上探讨H2O和CH4在煤表面竞争吸附的机理,构建C30H14(9个苯环)代表煤局部表面,通过密度泛函理论分析甲烷分子,水分子和煤局部表面之间的相互作用。结果表明,水分子在煤表面的吸附比甲烷分子在煤表面的吸附更加稳定,二者以最稳定吸附构型吸附时的吸附能分别为-13.23 kJ/mol和-10.13 kJ/mol.当甲烷分子与已吸附水分子的煤表面作用时,甲烷分子吸附能显著下降,吸附平衡距离增大,表明水分子能迫使甲烷吸附到不稳定位置。水分子和甲烷共存时,水分子处于吸附状态,甲烷分子处于脱附状态且总能量最低,进而从分子水平表明水和甲烷竞争吸附时水处于主导地位。
Abstract:
In order to study the mechanism of competitive adsorption of H2O and CH4 on high rank coal surface,the C30H14(nine benzene rings)representing local surface of high rank coal was constructed.The interaction between methane molecules,H2O molecules and the local surface ofcoal was analyzed by density functional theory.The results show that the adsorption of H2O molecules on the coal surface is more stable than that of methane,and the adsorption energies of H2O and CH4 with the most stable adsorption configuration is -13.23and -10.13kJ/mol,respectively.When methane molecules interact with the coal surface with pre-adsorbed water,the adsorption energy of methane molecule decreases significantly and the adsorption equilibrium distance increases,which indicates that the H2O molecules could compel CH4 molecules onto the less stable site.When two molecules(H2O and CH4)interact with the coal surface,the total energy of H2O molecule in the adsorption state and methane molecule in the desorption state is the lowest.From the molecular level,H2O molecules play a dominant role in the competitive adsorption between H2O and methane.

参考文献/References:


[1] 林柏泉.矿井瓦斯防治理论与技术(第2版)[M].北京:中国矿业大学出版社,2010. LIN Bai-Quan.Theory and technology of mine gas control(Second Edition)[M].Beijing:China University of Mining and Technology Press,2010.
[2]俞启香,程远平.矿井瓦斯防治[M].北京:中国矿业大学出版社,2012. YU Qi-xiang,CHENG Yuan-ping.Mine gas control[M].Beijing:China University of Mining and Technology Press,2012.
[3]ZHANG Xiang-liang,LIN Bai-quan,ZHU Chuan-jie,et al.Improvement of the electrical disintegration of coal sample with different concentrations of NaCl solution[J].Fuel,2018,222:695-704.
[4]LIN Bai-quan,ZHANG Xiang-liang,YAN Fa-zhi,et al.Improving the conductivity and porosity of coal with NaCl solution for high-voltage electrical fragmentation[J].Energy and Fuels,2018,32(4):5010-5019.
[5]熊祖强,袁广玉,陶广美.综放工作面注水降尘技术[J].西安科技大学学报,2013,33(4):394-399. XIONG Zu-qiang,YUAN Guang-yu,TAO Guang-mei.Water injection and dust control technology in fully mechanized top coal caving face[J].Journal of Xi'an University of Science and Technology,2013,33(4):394-399.
[6]肖知国,王兆丰.煤层注水防治煤与瓦斯突出机理的研究现状与进展[J].中国安全科学学报,2009,19(10):150-158. XIAO Zhi-guo,WANG Zhao-feng.Research status and progress of coal seam water injection to prevent coal and gas outburst[J].Chinese Journal of Safety Science,2009,19(10):150-158.
[7]ZHAO Yang-sheng,QU Fang,WAN Zhi-jun,et al.Experimental investigation on correlation between permeability variation and pore structure during coal pyrolysis[J].Transport in Porous Media,2010,82(2):401-412.
[8]冯增朝,赵 东,赵阳升.块煤含水率对其吸附性影响的试验研究[J].岩石力学与工程学报,2009,28(A02):3291-3295. FENG Zeng-zhao,ZHAO Dong,ZHAO Yang-sheng.Experimental study on the impact of water ratio to adsorption on lump coal[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(A02):3291-3295
[9]李晓华,王兆丰,李青松,等.水分对新景矿3号煤层瓦斯解吸规律的影响[J].煤炭科学技术,2011,39(5):47-50. LI Xiao-hua,WANG Zhao-feng,LI Qing-song,et al.Moisture affected to gas desorption law of No.3 seam in Xinjing mine[J].Coal Science and Technology,2011,39(5):47-50.
[10]Day Stuart,Sakurovs Richard,Weir Steve.Supercritical gas sorption on moist coals[J].International Journal of Coal Geology,2008,74(3):203-214.
[11]相建华,曾凡桂,梁虎珍,等.CH4/CO2/H2O在煤分子结构中吸附的分子模拟[J].中国科学(地球科学),2014,44(7):1418-1428. XIANG Jian-hua,ZENG Fan-gui,LIANG Hu-zhen,et al.Molecular simulation of the CH4/CO2/H2O adsorption onto the molecular structure of coal[J].Scientia Sinica(Terrae),2014,44(7):1418-1428.
[12]夏阳超,刘晓阳,刘生玉.褐煤表面含氧官能团对水分子的吸附机理[J].煤炭转化,2016,39(4):1-5. XIA Yang-chao,LIU Xiao-yang,LIU Sheng-yu.Adsorption mechanism of water molecules onto oxygen containing functional groups of lignite[J].Coal Conversion,2016,39(4):1-5.
[13]ZHANG Jun-fang,Clennell M B,Dewhurst D N,et al.Combined monte carlo and molecular dynamics simulation of methane adsorption on dry and moist coal[J].Fuel,2014,122(15):186-197.
[14]王宝俊,凌丽霞,赵清艳,等.气体与煤表面吸附作用的量子化学研究[J].化工学报,2009,60(4):995-1000. WANG Bao-jun,LING Li-xia,ZHAO Qing-yan,et al.Quantum chemistry study on adsorption of gas on coal surface[J].Journal of Chemical Industry and Engineering Society of China,2009,60(4):995-1000.
[15]XU He,CHU Wei,HUANG Xia,et al.CO2 adsorption-assisted CH4 desorption on carbon models of coal surface:A DFT study[J].AppliedSurface Science,2016,375:196-206.
[16] FU Yu-tong,SONG Yu.CO2-adsorption promoted CH4-desorption onto low-rank coal vitrinite by density functional theory including dispersion correction(DFT-D3)[J].Fuel,2018,219:259-269.
[17]ZHOU Ya-nan,SUN Wen-jing,WEI Chu,et al.Theoretical insight into the enhanced CH4 desorption via H2O adsorption on different rank coal surfaces[J].Journal of Energy Chemistry,2016,25(4):677-682.
[18]Grimme S,Ehrlich S,Goerigk L.Effect of the damping function in dispersion corrected density functional theory[J].Journal of Computational Chemistry,2011,32(7):1456-1465.
[19]Grimme S,Antony J,Ehrlich S,et al.A consistent and accurate ab initio parametrization of density functional dispersion correction(DFT-D)for the 94 elements H-Pu[J].Journal of Chemical Physics,2010,132(15):154104.
[20]Sony P,Puschnig P,Nabok D,et al.Importance of van der Waals interaction for organic molecule-metal junctions: adsorption of thiophene on Cu(110)as a prototype[J].Physical Review Letters,2007,99(17):176401.

相似文献/References:

[1]王晓锋,吕玉民,吴敏杰,等.注入CO2提高煤层气井产能技术的作用机理[J].西安科技大学学报,2010,(06):706.
 WANG Xiao-feng,LV Yu-min,WU Min-jie,et al.Mechanism and factors of CO2 enhanced coalbed methane recovery[J].Journal of Xi'an University of Science and Technology,2010,(06):706.

备注/Memo

备注/Memo:
收稿日期:2018-07-10 责任编辑:杨泉林
基金项目:国家自然科学基金(51474211); 国家重点研发计划(2016YFC0801402)
通信作者:林柏泉(1960-),男,福建龙岩人,教授,博士生导师,E-mail:lbq21405@126.com
更新日期/Last Update: 2018-11-15