[1]司 鹄,赵剑楠,胡千庭.大数据理论下的煤与瓦斯突出事故致因分析[J].西安科技大学学报,2018,(04):515-522.[doi:10.13800/j.cnki.xakjdxxb.2018.0401 ]
 SI Hu,ZHAO Jian-nan,HU Qian-ting.Analysis of causes of coal and gas outburst accidents based on big data theory[J].Journal of Xi'an University of Science and Technology,2018,(04):515-522.[doi:10.13800/j.cnki.xakjdxxb.2018.0401 ]
点击复制

大数据理论下的煤与瓦斯突出事故致因分析(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2018年04期
页码:
515-522
栏目:
出版日期:
2018-07-15

文章信息/Info

Title:
Analysis of causes of coal and gas outburst accidents based on big data theory
文章编号:
1672-9315(2018)04-0515-08
作者:
司 鹄12赵剑楠12胡千庭12
1.重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400030; 2.重庆大学 资源及环境科学学院,重庆 400030
Author(s):
SI Hu12ZHAO Jian-nan12HU Qian-ting12
(1.State Key of Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University,Chongqing 400030,China; 2.College of Resource and Environment Science, Chongqing University,Chongqing 400030,China)
关键词:
安全科学与工程 煤与瓦斯突出 大数据理论 致因 瓦斯含量
Keywords:
safety science and engineering coal and gas outburst big data theory influential factors gas content
分类号:
X 93
DOI:
10.13800/j.cnki.xakjdxxb.2018.0401
文献标志码:
A
摘要:
煤与瓦斯突出事故致因分析对矿井的安全生产具有重要意义。文中将大数据理论应用于煤与瓦斯突出事故致因分析,旨在为突出事故提供一种新的研究方法。对近15 a来发生的一般及以上的煤与瓦斯突出事故进行统计分析与深度挖掘,提取影响煤与瓦斯突出事故发生的27个因素。采用关联分析对影响因素进行定量研究,分析其重要程度; 并将其中7个主要因素分别与瓦斯含量和瓦斯压力进行交叉耦合分析,归纳煤与瓦斯突出事故发生的一般性规律。研究表明:造成煤与瓦斯突出事故的主要影响因素不仅是瓦斯含量和瓦斯压力,地质构造、煤层厚度、开拓方式、采煤工艺、作业方式和掘进工艺也对煤与瓦斯突出事故具有重要影响; 在不同开采条件下发生煤与瓦斯突出的临界瓦斯含量差异较大,对于复杂地质构造的矿井,当瓦斯含量接近8 m3/t时采取区域防突措施,才能有效地防止突出事故的发生; 利用大数据理论分析煤与瓦斯突出事故可以为事故的预测预警提供可信的依据,能有效提高煤与瓦斯突出预测的准确率。
Abstract:
The analysis of the causes of coal and gas outburst accidents is of great significance to the safe production of mines.This paper applies the big data theory to the cause analysis of coal and gas outburst accidents,aiming to provide a new research method for highlighting accidents.The statistical analysis and in-depth probe of coal and gas outburst accidents occurred in the past 15 years have extracted 27 factors that have affected the occurrence of coal and gas outburst accidents.The correlation analysis was used to quantitatively study the influential factors and analyze their importance.Seven of them were cross-coupledly analyzed with the gas content and gas pressure,and the general laws of coal and gas outburst accidents were summarized.The research shows that the main influential factors on coal and gas outburst accidents are not only gas content and gas pressure,but also geological structure,coal seam thickness,mining depth,development methods,coal mining technology,operation methods and excavation technology,which also influence the coal and gas outburst accidents.And the critical gas content and gas pressure under different mining conditions are different for coal and gas outburst.In summary,taking into account the safety of mining and the safety cost of coal mining enterprises,when the gas content reaches 8 m3/t,coal and gas outburst prevention measures should be taken to ensure the safe production of mines.The analysis of coal and gas outburst accidents with big data theory provides a credible basis for the prediction and early warning of accidents,and can effectively improve the accuracy rate of prediction of coal and gas outbursts.

参考文献/References:

[1] 林伯强.中国能源发展报告(2017)[M].北京:北京大学出版社,2017. LIN Bo-qiang.Annual report on China's energy development(2017)[M].Beijing:Peking University Press,2017. [2]Hey T,Tansley S,Tolle K M.The fourth paradigm:data-intensive scientific discovery[M].Redmond,WA:Microsoft research,2009. [3]Mishra A D,Singh Y B.Big data analytics for security and privacy challenges[C]//Computing,Communication and Automation(ICCCA),2016 International Conference on IEEE,2016:50-53. [4] 王 忠,安智慧.国外城市管理大数据应用典型案例及启示[J].现代情报,2016,36(9):168-172. WANG Zhong,AN Zhi-hui.Enlightenment of foreign typical case on uses of big data in urban management[J].Journal of Modern Information,2016,36(9):168-172. [5] 李鹏飞.基于大数据应用的300MW CFB机组调峰经济性研究[D].北京:华北电力大学,2015. LI Peng-fei.Study on economy of 300 MW CFB boiler unit peak-shaving based on large data application[D].Beijing:North China Electric Power University,2015. [6]叶中行.互联网金融中的大数据应用[J].科研信息化技术与应用,2015,6(2):3-10. YE Zhong-xing.Big data applications in internet finance[J].Escience Technology and Application,2015,6(2):3-10. [7] Huang L,Wu C,Wang B,et al.A new paradigm for accident investigation and analysis in the era of big data[J].Process Safety Progress,2018,37(1):42-48. [8] Ouyang Q,Wu C,Huang L.Methodologies,principles and prospects of applying big data in safety science research[J].Safety Science,2018,101:60-71. [9]Kim J.Big data,health informatics,and the future of cardiovascular medicine[J].Journal of the American College of Cardiology,2017,69(7):899-902. [10]Balas E A,Vernon M,Magrabi F,et al.Big data clinical research:validity,ethics,and regulation[J].Studies in Health Technology & Informatics,2015,216:448-452. [11]Mohammed E A,Far B H,Naugler C.Applications of the MapReduce programming framework to clinical big data analysis:current landscape and future trends[J].Bio Data Mining,2014,7(1):22. [12]Li R,Shi S,Wu A,et al.Research on prediction of gas emission based on self-organizing data mining in coal mines[J].Procedia Engineering,2014,84(4):779-785. [13]Meng Q,Ma X,Zhou Y.Forecasting of coal seam gas content by using support vector regression based on particle swarm optimization[J].Journal of Natural Gas Science and Engineering,2014,21(21):71-78. [14]孙继平.煤矿事故分析与煤矿大数据和物联网[J].工矿自动化,2015,41(3):1-5. SUN Ji-ping.Accident analysis and big data and internet of things in coal mine[J].Industry and Mine Automation,2015,41(3):1-5. [15]盛 武,付小红,高明中,等.煤矿瓦斯事故应急处置致因因子分析[J].中国安全科学学报,2014,24(12):144-150. SHENG Wu,FU Xiao-hong,GAO Ming-zhong,et al.Factor analysis of coal mine gas accidents emergency handling causation[J].China Safety Science Journal,2014,24(12):144-150. [16]王建豪.煤矿火灾事故个人不安全行为原因研究[D].北京:中国矿业大学(北京),2017. WANG Jian-hao.Study on unsafe behavior causes at the individual level for coal mine fire accidents[D].Beijing:China University of Mining and Technology(Beijing),2017. [17] 吴海波,施式亮,念其锋.基于Spark Streaming流回归的煤矿瓦斯浓度实时预测[J].中国安全生产科学技术,2017,13(5):84-89. WU Hai-bo,SHI Shi-liang,NIAN Qi-feng.Real-time prediction of gas concentration in coal mine based on spark streaming linear regression[J].Journal of Safety Science and Technology,2017,13(5):84-89. [18]郁 云,杜 杰,陆金桂.基于人工神经网络的瓦斯涌出量预测[J].计算机仿真,2006,23(8):146-148. YU Yun,DU Jie,LU Jin-gui.Mine gas gushing forecasting based on artificial neural network[J].Computer Simulation,2006,23(8):146-148. [19]刘玉海.MapReduce大数据分析在煤矿的应用研究[J].软件,2016,37(5):101-104. LIU Yu-hai.Application research of MapReduce big data analysis in coal mine[J].Computer Engineering and Software,2016,37(5):101-104. [20]罗 波,张金锁,邢书宝.大数据煤矿胶带输送机速度状态评估模型设计[J].西安科技大学学报,2016,36(2):176-180. LUO Bo,ZHANG Jin-suo,XING Shu-bao.Design of speed state evaluation model of coal mine belt conveyor based on big data[J].Journal of Xi'an University of Science and Technology,2016,36(2):176-180. [21]张庆华,李明建,王麒翔,等.基于大数据思维的瓦斯地质分析方法[J].煤炭技术,2015,34(2):75-76. ZHANG Qing-hua,LI Ming-jian,WANG Qi-xiang,et al.Gas geology methods based on big data thinking[J].Coal Technology,2015,34(2):75-76. [22]陈炎光,陈冀飞.中国煤矿开拓系统[M].北京:中国矿业大学出版社,1996. CHEN Yan-guang,CHEN Ji-fei.Coal mine development system in China[M].Beijing:China University of Mining and Technology Press,1996. [23]郭启铭,樊 玮.基于Cramer's V的连续属性离散化算法[J].计算机工程,2008,34(4):111-112. GUO Qi-ming,FAN Wei.Discretization algorithm of continuous attributes based on Cramer's V[J].Computer Engineering,2008,34(4):111-112. [24]王 丹,吴孟达,刘银山.粗糙关系数据库空间结构及其粗糙集模型[J].计算机工程与应用,2005,41(34):163-167. WANG Dan,WU Meng-da,LIU Yin-shan.The spatial structure and rough sets model of rough relational database[J].Computer Engineering and Applications,2005,41(34):163-167.

相似文献/References:

[1]秦忠诚,陈光波,李 谭,等.“AHP+熵权法”的CW-TOPSIS煤矿内因火灾评价模型[J].西安科技大学学报,2018,(02):193.[doi:10.13800/j.cnki.xakjdxxb.2018.0204]
 QIN Zhong-cheng,CHEN Guang-bo,LI Tan,et al.CW-TOPSIS mine internal caused fire evaluation model of “AHP+ entropy weight method”[J].Journal of Xi'an University of Science and Technology,2018,(04):193.[doi:10.13800/j.cnki.xakjdxxb.2018.0204]
[2]潘红宇,董晓刚,张天军,等.单轴压缩下松软煤样破裂损伤演化特性研究[J].西安科技大学学报,2018,(02):202.[doi:10.13800/j.cnki.xakjdxxb.2018.0205]
 PAN Hong-yu,DONG Xiao-gang,ZHANG Tian-jun,et al.Evolution characteristics of soft coal sample fracture damage under uniaxial compression[J].Journal of Xi'an University of Science and Technology,2018,(04):202.[doi:10.13800/j.cnki.xakjdxxb.2018.0205]
[3]姜 华,邵珅菲,宫武旗,等.叶片形状对对旋风机正反风性能影响[J].西安科技大学学报,2018,(02):230.[doi:10.13800/j.cnki.xakjdxxb.2018.0209]
 JIANG Hua,SHAO Shen-fei,GONG Wu-Qi,et al.Forward and reverse aerodynamic performance of different wing-shaped blades of a contra-rotating axial-flow fan[J].Journal of Xi'an University of Science and Technology,2018,(04):230.[doi:10.13800/j.cnki.xakjdxxb.2018.0209]
[4]林海飞,杨二豪,赵鹏翔,等.类岩石材料力学特性参数多元线性回归模型[J].西安科技大学学报,2018,(03):351.[doi:10.13800/j.cnki.xakjdxxb.2018.0302]
 LIN Hai-fei,YANG Er-hao,ZHAO Peng-xiang,et al.Multivariate linear regression model of the mechanical properties of rock-like materials[J].Journal of Xi'an University of Science and Technology,2018,(04):351.[doi:10.13800/j.cnki.xakjdxxb.2018.0302]
[5]赵大龙,田水承,王 璟,等.矿工大五人格特质对煤矿险兆事件上报的影响[J].西安科技大学学报,2018,(03):360.[doi:10.13800/j.cnki.xakjdxxb.2018.0303]
 ZHAO Da-long,TIAN Shui-cheng,WANG Jing,et al.Influence of miners'big-five personality trait on coal mine near-miss reporting[J].Journal of Xi'an University of Science and Technology,2018,(04):360.[doi:10.13800/j.cnki.xakjdxxb.2018.0303]
[6]李 品.中国能源供给安全影响因素研究[J].西安科技大学学报,2018,(03):403.[doi:10.13800/j.cnki.xakjdxxb.2018.0309]
 LI Pin.Influential factors of energy supply security of China[J].Journal of Xi'an University of Science and Technology,2018,(04):403.[doi:10.13800/j.cnki.xakjdxxb.2018.0309]
[7]张 锐,王 亮,高 杰,等.岩浆岩圈闭区煤层钻屑瓦斯解吸指标敏感性研究[J].西安科技大学学报,2018,(03):417.[doi:10.13800/j.cnki.xakjdxxb.2018.0311]
 ZHANG Rui,WANG Liang,GAO Jie,et al.Desorption index sensitivity of drilling cuttings of coal seams in igneous rock trap area[J].Journal of Xi'an University of Science and Technology,2018,(04):417.[doi:10.13800/j.cnki.xakjdxxb.2018.0311]
[8]王亚超,魏子淇,王彩萍,等.黄铁矿对煤氧化表面官能团的影响[J].西安科技大学学报,2018,(04):585.[doi:10.13800/j.cnki.xakjdxxb.2018.0410 ]
 WANG Ya-chao,WEI Zi-qi,WANG Cai-ping,et al.Effects of pyrite on functional groups during coal oxidation[J].Journal of Xi'an University of Science and Technology,2018,(04):585.[doi:10.13800/j.cnki.xakjdxxb.2018.0410 ]
[9]张景飞,郭 倩,朱同功,等.多场耦合下煤岩渗透率演化规律——以平煤十矿为例[J].西安科技大学学报,2018,(05):713.[doi:10.13800/j.cnki.xakjdxxb.2018.0504]
 ZHANG Jing-fei,GUO Qian,ZHU Tong-gong,et al.Evolution of coal rock permeability with multiphysics coupling——taking PingMei No.10 mine as an example[J].Journal of Xi'an University of Science and Technology,2018,(04):713.[doi:10.13800/j.cnki.xakjdxxb.2018.0504]
[10]方 刚,夏玉成.柴沟矿薄基岩顶巨厚煤层过沟开采防治水技术[J].西安科技大学学报,2018,(05):758.[doi:10.13800/j.cnki.xakjdxxb.2018.0510]
 FANG Gang,XIA Yu-cheng.Prevention and control technology of water during mining extremely thick coal seam with thin rock roof under ditch in Chaigou coal mine[J].Journal of Xi'an University of Science and Technology,2018,(04):758.[doi:10.13800/j.cnki.xakjdxxb.2018.0510]

备注/Memo

备注/Memo:
收稿日期:2018-04-28 责任编辑:杨泉林
基金项目:国家重点研发计划项目(2016YFC0801404); 国家重大科技专项(2016ZX05043005); 国家自然科学基金(51674050)
通信作者:司 鹄(1964-),女,重庆人,博士,教授,E-mail:sihu@cqu.edu.cn
更新日期/Last Update: 2018-08-29