[1]杨宏亮,薛 河,倪陈强.冷加工对316L不锈钢裂尖力学特性的影响[J].西安科技大学学报,2018,(03):484-489.[doi:10.13800/j.cnki.xakjdxxb.2018.0320]
 YANG Hong-liang,XUE He,NI Chen-qiang.Effect of cold working on mechanical properties at crack tip of 316L stainless steel[J].Journal of Xi'an University of Science and Technology,2018,(03):484-489.[doi:10.13800/j.cnki.xakjdxxb.2018.0320]
点击复制

冷加工对316L不锈钢裂尖力学特性的影响(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2018年03期
页码:
484-489
栏目:
出版日期:
2018-05-15

文章信息/Info

Title:
Effect of cold working on mechanical properties at crack tip of 316L stainless steel
文章编号:
1672-9315(2018)03-0484-06
作者:
杨宏亮1薛 河2倪陈强2
1.西安科技大学 工程训练中心,陕西 西安 710054; 2.西安科技大学 机械工程学院,陕西 西安 710054
Author(s):
YANG Hong-liang1XUE He2NI Chen-qiang2
(1.Center of Engineering Training,Xi'an University of Science and Technology,Xi'an 710054,China; 2.College of Mechanical and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)
关键词:
机械工程 应力腐蚀裂纹 有限元模拟 力学特性 冷加工 316L不锈钢
Keywords:
mechanical engineering stress corrosion cracking finite element simulation mechanical properties cold working 316L stainless steel
分类号:
TG 174.3
DOI:
10.13800/j.cnki.xakjdxxb.2018.0320
文献标志码:
A
摘要:
采用弹塑性有限元软件的子模型技术,研究了核电压力容器高温水环境中冷加工程度对316L不锈钢应力腐蚀裂纹尖端应力应变状态和断裂参量的影响,并结合316L不锈钢在不同冷加工程度下屈服强度、杨氏模量、硬化指数和偏移系数的变化规律,对比冷加工程度对微观裂纹尖端应力腐蚀开裂速率的影响,发现冷加工程度不同,材料的力学参数不同,进而影响应力腐蚀裂纹尖端Mises应力、等效塑性应变、拉伸应力、拉伸应变的分布状态和裂尖J积分变化规律。结果表明:不同冷加工程度引起316L不锈钢材料力学性能的变化会改变应力腐蚀裂纹裂尖应力应变状态和断裂参量的分布规律,当应力强度因子一定时,随着冷加工程度的增大,应力腐蚀裂尖Mises应力增大,而裂尖的等效塑性应变减小,同时应力腐蚀裂尖的拉伸应力随着冷加工程度的增大而增大,而拉伸应变随着冷加工程度的增大而减小,裂尖J积分随着冷加工程度的增大而增大,冷加工程度的增加在一定范围内加剧了高温高压水环境中316L不锈钢应力腐蚀开裂速率。
Abstract:
The effect of cold working degree on stress and strain state and fracture parameters at stress corrosion cracking tip of 316L stainless steel in high temperature water environment of the nuclear pressure vessel was studied by sub-model technology of elastic plastic finite element method.It combined with the change rule of yield strength,Young's modulus,hardening exponent and yield offset of 316L stainless steel under different cold working degree,and compared the influence of cold working degree on stress corrosion cracking rate at micro crack tip.It is pointed that the degree of cold working is different,and the mechanical parameters of the material are different,which will further affect the Mises stress,equivalent plastic strain,tensile stress,tensile strain distribution and the J integral rule of crack tip.The results indicate that the change of mechanical properties of 316L stainless steel caused by different cold working degree can change the distribution rule of stress and strain state and fracture parameter in stress corrosion crack tip.When the stress intensity factor is certain,the Mises stress in stress corrosion cracking tip increases with the increase of the cold working degree,and the equivalent plastic strain in the crack tip decreases with the increase of the cold working degree.At the same time,the tensile stress in stress corrosion cracking tip increases with the increase of the cold working degree,and the tensile strain decreases with the increase of the cold working degree.The J integral at the crack tip increases with the increase of cold working degree.The increase of cold working degree aggravates the stress corrosion cracking rate of 316L stainless steel to a certain extent in high temperature and high pressure water environment.

参考文献/References:

[1] Scatigno G G,Ryan M P,Giuliani F,et al.The effect of prior cold work on the chloride stress corrosion cracking of 304L austenitic stainless steel under atmospheric conditions[J].Materials Science and Engineering A,2016,668:20-29.
[2] Peng Q J,Hou J,Yonezawa T,et al.Environmentally assisted crack growth in one-dimensionally cold worked Alloy 690TT in primary water[J].Corrosion Science,2012,57(4):81-88.
[3] 侯 娟,彭群家,庄子哲雄,等.镍基合金焊接过渡区微观结构及应力腐蚀行为研究[J].金属学报,2010,46(10):1258-1266. HOU Juan,PENG Qun-jia,SHOJI Testuo,et al.Study of microstructure and stress corrosion cracking behavior in welding transition zone of Ni-based alloys[J].Acta MetallurgicaSinica,2010,46(10):1258-1266.
[4]DU Dong-hai,CHEN Kai,LU Hui,et al.Effects of chloride and oxygen on stress corrosion cracking of cold worked 316/316L austenitic stainless steel in high temperature water[J].Corrosion Science,2016,110:134-142.
[5]ZHANG Li-tao,WANG Jian-qiu.Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment[J].Journal of Nuclear Materials,2014,446(1-3):15-26.
[6] Ahmed I I,Grant B,Sherry A H,et al.Deformation path effects on the internal stress development in cold worked austenitic steel deformed in tension[J].Materials Science and Engineering A,2014,614(1-2):326-337.
[7] Hou J,Shoji T,Lu Z P,et al.Residual strain measurement and grain boundary characterization in the heat affected zone of a weld joint between alloy 690TT and alloy 52[J].Journal of Nuclear Materials,2010,397(1-3):109-115.
[8]Johsei Nagakawa,Ueno K,Murase Y,et al.Effect of cold-work on the radiation-induced deformation of austenitic stainless steels[J].Journal of Nuclear Materials,2007,367-370:910-914.
[9]Terachi T,Yamada T,Miyamoto T,et al.SCC growth behaviors of austenitic stainless steels in simulated PWR primary water[J].Journal of Nuclear Materials,2012,426(1-3):59-70.
[10]Karlsen W,Dyck S V.The effect of prior cold-work on the deformation behavior of neutron irradiated AISI 304 austenitic stainless steel[J].Journal of Nuclear Materials,2010,406(1):127-137.
[11]Lu Z P,Shoji T,Takeda Y,et al.Transient and steady state crack growth kinetics for stress corrosion cracking of a cold worked 316L stainless steel in oxygenated pure water at different temperatures[J].Corrosion Science,2008,50(2):561-575.
[12]Ilevbare G O,Cattant F,Peat N K.SCC of stainless steels under PWR service conditions[C]//Fontevraud 7-Contribution of Materials Investigations to Improve the Safety and Performance of LWRs,Avignon,2010:26-30.
[13]Arioka K,Yamada T,Terachi T,et al.Intergranular stress corrosion cracking behavior of austenitic stainless steels in hydrogenated high-temperature water[J].Corrosion,2006,62(1):74-83.
[14]Meng F J,Lu Z P,Shoji T.Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations[J].Corrosion Science,2011,53(8):2558-2565.
[15]Andresen P L,Morra M M.IGSCC of non-sensitized stainless steels in high temperature water[J].Journal of Nuclear Materials,2008,383(1):97-111.
[16]Yamazaki S,Lu Z P,Ito Y,et al.The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water[J].Corrosion Science,2008,50(3):835-846.
[17]Tribouilloy L,Vaillant F,Olive J M.Stress corrosion cracking on cold-worked austenitic stainless steels in PWR environment[J].Advances in Materials Science,2007,7(1):61-69.
[18]Terachi T,Yamada T,Miyamoto T,et al.SCC growth behaviors of austenitic stainless steels in simulated PWR primary water[J].Journal of Nuclear Materials,2012,426(1-3):59-70.
[19]Masayuki Kamaya,Masahiro Kawakubo.True stress strain curves of cold worked stainless steel over a large range of strains[J].Journal of Nuclear Materials,2014,451(1-3):264-275.
[20]Masayuki Kamaya.Elastic-plastic failure assessment of cold worked stainless steel pipes[J].International Journal of Pressure Vessels and Piping,2015,131:45-51.
[21]Keitaro Enami.The effects of compressive and tensile prestrain on ductile fracture initiation in steels[J].Engineering Fracture Mechanics,2005,72(7):1089-1105.
[22]李永强,薛 河.核电关键结构材料应力腐蚀裂纹裂尖微观力学特性分析[J].西安科技大学学报,2016,36(3):380-380. LI Yong-qiang,XUE He.Micro-mechanical state at SCC tip in nuclear key structure materials[J].Journal of Xi'an University of Science and Technology,2016,36(3):380-380.
[23]Thorsten Michler,Joerg Naumann,Martin Hock,et al.Microstructural properties controlling hydrogen environment embrittlement of cold worked 316 type austenitic stainless steels[J].Materials Science and Engineering A,2015,628:252-261.
[24]XUE He,LI Yong-qiang.Micro-mechanical state at tip of environmentally assisted cracking in nickel-based alloy[J].Rare Metal Materials and Engineering,2016,45(3):537-541.
[25]YANG Hong-liang,XUE He,YANG Fu-qiang,et al.Effect of film-induced stress on mechanical properties at stress corrosion cracking tip[J].Rare Metal Materials and Engineering,2017,46(12):3595-3600.
[26]杨宏亮,薛 河,赵凌燕,等.氧化膜形状对镍基合金应力腐蚀裂尖应力应变的影响[J].热加工工艺,2016,45(20):58-60. YANG Hong-liang,XUE He,ZHAO Ling-yan,et al.Effect of oxide film shape on stress-strain at stress corrosion cracking tip of Ni-Based alloy[J].Hot Working Technology,2016,45(20):58-60.
[27]Xue H,Sato Y,Shoji T.Quantitative estimation of the growth of the environment assisted cracks at flaws in light water reactor components[J].Journal of Pressure Vessel Technology,Transactions of the ASME,2009,131(1):61-69.
[28]Couvant T,Legras L,Pokor C,et al.Investigations on the mechanisms of PWSCC of strain hardened austenitic stainless steels[C]//13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Whistler,British Columbia,2007:273-280.

相似文献/References:

[1]郭 瑞,薛 河,崔英浩.安全端焊接残余应力对裂纹尖端力学参量的影响[J].西安科技大学学报,2018,(03):479.[doi:10.13800/j.cnki.xakjdxxb.2018.0319]
 GUO Rui,XUE He,CUI Ying-hao.Influence of residual stress in safety end on mechanical parameters at crack tip[J].Journal of Xi'an University of Science and Technology,2018,(03):479.[doi:10.13800/j.cnki.xakjdxxb.2018.0319]
[2]杨 林,马宏伟,王川伟,等.校园巡检机器人智能导航与控制[J].西安科技大学学报,2018,(06):1013.[doi:10.13800/j.cnki.xakjdxxb.2018.0619]
 YANG Lin,MA Hong-wei,WANG Chuan-wei,et al.Intelligent navigation and control of campus inspection robot[J].Journal of Xi'an University of Science and Technology,2018,(03):1013.[doi:10.13800/j.cnki.xakjdxxb.2018.0619]
[3]高 扬,李佳璞,杨来侠,等.可降解药物控释系统的药物扩散系数表征[J].西安科技大学学报,2018,(06):1021.[doi:10.13800/j.cnki.xakjdxxb.2018.0620]
 GAO Yang,LI Jia-pu,YANG Lai-xia,et al.Diffusion coefficient expression of degradable controlled drug delivery system[J].Journal of Xi'an University of Science and Technology,2018,(03):1021.[doi:10.13800/j.cnki.xakjdxxb.2018.0620]
[4]张 宁,张幼振,陈 盼.煤矿巷道底鼓治理机群施工建模及优化配置[J].西安科技大学学报,2019,(01):96.[doi:10.13800/j.cnki.xakjdxxb.2019.0114 ]
 ZHANG Ning,ZHANG You-zhen,CHEN Pan.Construction modeling and optimal allocation of roadway floorheave control group in coal mine[J].Journal of Xi'an University of Science and Technology,2019,(03):96.[doi:10.13800/j.cnki.xakjdxxb.2019.0114 ]
[5]倪陈强,薛 河,赵凌燕,等.弧形双悬臂梁试样裂纹扩展电测接线点布局研究[J].西安科技大学学报,2019,(02):309.[doi:10.13800/j.cnki.xakjdxxb.2019.0218 ]
 NI Chen-qiang,XUE He,ZHAO Ling-yan,et al.Wire connection points layout of crack extension electrical measurement of contoured double cantilever beam specimen[J].Journal of Xi'an University of Science and Technology,2019,(03):309.[doi:10.13800/j.cnki.xakjdxxb.2019.0218 ]

备注/Memo

备注/Memo:
收稿日期:2017-10-18 责任编辑:高 佳
基金项目:国家自然科学基金(51475362); 陕西省教育厅科研计划资助项目(16JK1493)
通信作者:薛 河(1961-),男,江苏扬州人,教授,博导,E-mail:xue_he@hotmail.com
更新日期/Last Update: 2018-06-30