[1]李红霞,黄已芯,田水承,等.小脑神经网络在矿工疲劳监测控制系统中的应用[J].西安科技大学学报,2018,(03):443-451.[doi:10.13800/j.cnki.xakjdxxb.2018.0314]
 LI Hong-xia,HUANG Yi-xin,TIAN Shui-cheng,et al.Miner fatigue monitoring and control system based on cerebella model articulation controller neutral network[J].Journal of Xi'an University of Science and Technology,2018,(03):443-451.[doi:10.13800/j.cnki.xakjdxxb.2018.0314]
点击复制

小脑神经网络在矿工疲劳监测控制系统中的应用(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2018年03期
页码:
443-451
栏目:
出版日期:
2018-05-15

文章信息/Info

Title:
Miner fatigue monitoring and control system based on cerebella model articulation controller neutral network
文章编号:
1672-9315(2018)03-0443-09
作者:
李红霞1 黄已芯2田水承3侯媛彬4
1.西安科技大学 管理学院,陕西 西安 710054; 2.西安科技大学 能源学院,陕西 西安 710054; 3.西安科技大学 安全科学与工程学院,陕西 西安 710054; 4.西安科技大学 电气与控制工程学院,陕西 西安 710054
Author(s):
LI Hong-xia1HUANG Yi-xin2TIAN Shui-cheng3HOU Yuan-bin4
(1.College of Management,Xi'an University of Science and Technology,Xi'an 710054,China; 2.College of Energy Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 3.College of Safety Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 4.College of Electrical and Control Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)
关键词:
小脑神经网络 矿工疲劳水平 疲劳监测信号体系 疲劳监测与控制系统 多元信息融合
Keywords:
cerebella model articulation controller miner fatigue level fatigue monitoring signal system fatigue monitoring and control system multiple information fusion
分类号:
X 923
DOI:
10.13800/j.cnki.xakjdxxb.2018.0314
文献标志码:
A
摘要:
针对矿工井下疲劳监测与控制难题,探索矿工疲劳务工的生理指标状况,降低矿工疲劳状态下务工的可能性,指导煤矿高层管理者对矿工疲劳生产的管理与控制,并为新设计的矿工疲劳监测控制系统提供新的方法与依据。采用多元信息融合技术,提取了皮电、肌电、脑电等12个疲劳水平监测信号,对矿工务工期间进行半接触式肢体图像和信号分析,构建了矿工疲劳监测信号体系; 结合CMAC神经网络理论,提出矿工疲劳务工期间的疲劳检测控制系统模型,并通过收集矿工务工期间的多生理指标对构建的模型进行验证。结果表明:矿工疲劳监测与控制系统监测结果与实际矿工疲劳水平的平均偏差为0.2,偏差为0.1~0.3的约占51.7%,0.4~0.7的约占32.2%,0.8~1.0的约占16.1%,比传统的单一信号监测精度更高,偏差更小,更能满足实际生产中的矿工监测与控制的精度需求。为缓解当前矿工疲劳生产的现状,依据矿工疲劳监测结果,结合金融风险管理理论,应采用的方法是:当矿工疲劳水平超出生理负荷值时,机械自启强迫停止功能; 当矿工疲劳水平严重时,提醒班组长强迫矿工换班(岗); 当矿工出现疲劳迹象时,报警提示矿工调整自身疲劳状态等。为后期中国煤矿人员安全与高效生产的电子监测与控制领域提供一种新的设计参考。
Abstract:
This paper is aiming to solve the difficulty regarding to a detection and control on fatigue which probably happened on underground coal miners.The paper explores the miners' physiological indicators under a circumstance of their fatigue working in order to reduce its possibility.Possibly being a guideline for senior mining managers,the paper is also hoped to provide new methods and supports for an updated designed Miner Fatigue Detection and Control System.GSR,EMG,EEG and other 12 fatigue level monitoring signals is extracted based on Multiple Information Fusion Theory.A miner fatigue detection signal system has been build through an analysis of semi-contact limb image and signal during miners' work.Moreover,the Cerebella Model Articulation Controller(CMAC)Neural Network Theory is applied to construct a model referring to fatigue detection and control system.The model has been verified through all the data and MATLAB stimulation analysis.It is shown that the average deviation between the detection results,given by the model system,and the actual fatigue level is 0.2.A deviation from 0.1 to 0.3 accounts for approximately 51.7%.0.4 to 0.7 accounts for approximately 32.2%,and 0.8 to 1.0 accounts for approximately 16.1%.With a higher accuracy and a smaller deviation,the updated system is more likely to satisfy an accuracy requirement for miner fatigue detection and control than the traditional single signal system in practical production.According to the detection result and financial risk management principles,the methods are suggested as follows:Equipment will be forced to shut down automatically when miner's fatigue exceeds his physiological limitation.Group leaders will be reminded to command a compulsive shift change when serious fatigue occurs on miners.Adjustments will be alarmed when signs of fatigue appeared on miners.Hoping this paper enables to provide a new design reference for the field of electronic detection and control,which is significant to the safety and high-efficiency production of miners in China.

参考文献/References:

[1] 魏绍敏,田水承,陈勇刚.矿山人因事故的构成要素及分类初步研究[J].煤炭技术,2003,22(10):1-2. WEI Shao-min,TIAN Shui-cheng,Chen Yong-gang.Research on component factors and classification of mine personel accident[J].Coal Mine Technology,2003,22(10):1-2.
[2] 孙继平.煤矿井下人员位置监测系统联网[J].煤炭科学技术,2009,27(11):77-80. SUN Ji-ping.Networking of underground mine personnel position monitoring and measuring system[J].Coal Science and Technology,2009,27(11):77-80.
[3] Karthaus Melanie,Wascher Edmund,Getzmann Stepha-n.Proactive vs.reactive car driving:EEG evidence for different driving strategies of older drivers[J].Plos One,2018,13(1):10-22.
[4]KANG Jia-jie,XU Bin-shi,WANG Hai-dou.Delamination failure monitoring of plasma sprayed composite ceramic coatings in rolling contact by acoustic emission[J].Engineering Failure Analysis,2018,86(3):131-141.
[5]Lal Skl,Craig A.A critical review of the psychophysiology of driver fatigue[J].Biological Psychology,2001,55(3):63-77.
[6] Ji Q,Zhu Z W,Lan P L.Real-time nonintrusive monitoring and prediction of driver fatigue[J].IEEE Transactions on Vehicular Technology,2004,53(4):1052-1068.
[7]田水承,乌力吉,寇 猛,等.基于生理实验的矿工不安全行为与疲劳关系研究[J].西安科技大学学报,2016,36(3):324-330. TIAN Shui-cheng,WU Li-ji,KOU Meng,et al.Relationship between miners'unsafe behavior and fatigue based on physiological experiment[J].Journal of Xi'an University of Science and Technology,2016,36(3):324-330.
[8]YIN Wen-tao,FU Gui,YANG Chun,et al.Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors:2000-2014[J].Safety Science,2017,92(6):173-179.
[9]李乃文,张 丽,牛莉霞.不同作业阶段矿工安全注意力的事件相关电位研究[J].中国安全生产科学技术,2017,13(8):96-101. LI Nai-wen,ZHANG Li,NIU Li-xia.Research on event-related potentials for safety attention of miners in different operation stages[J].China Science and Technology Information,2017,13(8):96-101.
[10]邢娟娟.煤矿工人体能负荷与工伤事故关系研究[J].中国安全生产科学技术,2005,1(4):19-21. XING Juan-juan.Study in the relation between fatigue of coalminers and coal mine accidents in China[J].Journal of Safety Science and Technology,2005,1(4):19-21.
[11]成 波,冯睿嘉,张 伟,等.基于多源信息融合的驾驶人疲劳状态监测及预警方法研究[J].公路交通科技,2009,26(3):13-18. CHENG Bo,FENG Rui-jia,ZHANG Wei,et al.Driver drowsiness detection and warning system based on multi-source information fusion[J].Journal of Highway and Transportation Research and Development,2009,26(3):13-18.
[12]周姝春.CMAC学习性能及泛化性能研究综述[J].计算机仿真,2005,22(6):5-7. ZHOU Shu-chun.Reserarch on learning and generalization capability of CMAC:an overview[J].Computer Simulation,2005,22(6):5-7.
[13]Albus J S.A new approach to manipulator control:the Cerebellar Model Articulation Controller(CMAC)[J].Journal of Electronic Control,1975,97(13):220-227.
[14]Kotani K,Shibata T,Ohmi T.Impact of high-precision processing on the functional enhancement of neuron-MOS integrated circuits[J].IEEE Transform Electron,1996,79(3):407-414.
[15]Juang Jih Gau,Lee Chia Lin.Applications of cerebellar model articulation controllers to intelligent landing system[J].Journal of Universal Computer Science,2009,15(13):2586-2607.
[16]LIN Fa-jeng,LU Kuang-chin,YANG Bo-Hui.Recurrent fuzzy cerebellar model articulation neural network based power control of a single-stage three-phase grid-connected photovoltaic system during grid faults[J].IEEE Transactions on Industrial Electronics,2017,64(2):1258-1268.
[17]朱家群,邹 凌,孙玉强.CMAC神经网络与PID复合控制的应用研究[J].微计算机信息,2006,13(7):59-61. ZHU Jia-qun,ZOU Ling,SUN Yu-qiang.Application of CMAC neural network and PID compound control[J].Microcomputer Information,2006,13(7):59-61.
[18]徐 德,谭 民.一种FCMAC及在Wiener模型辨识中的应用研究[J].信息与控制,2002,31(2):159-163. XU De,TAN Min.A siso fuzzy FCMAC and its application in parameter identification of Wiener model[J].Information and Control,2002,31(2):159-163.
[19]侯媛彬,杜京义.改进小脑模型网络的干式变压器卷线机跑偏信号谐波分析[J].西安交通大学学报,2005,39(10):1092-1096. HOU Yuan-bin,DU Jing-yi.Harmonic wave analysis method of improved cerebellar model articulation control for coil winder of dry-type transformer[J].Journal of Xi'an Jiaotong University,2005,39(10):1092-1096.
[20]Miller T W,Hewes R P,Glanz F J,et al.Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller[J].IEEE Transactions Robot Automatic,1990,6(1):1-9.
[21]Lane S H,Handelman D A,Gelfand J J.Theory and development of higher-order CMAC neural networks[J].IEEE Control System Magazine,1992,12(2):23-30.

备注/Memo

备注/Memo:
收稿日期:2017-04-05 责任编辑:李克永
基金项目:国家自然科学基金(717271169,71273208); 陕西省教育厅哲学社科基金(14J2026)
通信作者:李红霞(1965-),女,陕西西安人,教授,博士生导师,E-mail:406144519@qq.com
更新日期/Last Update: 2018-06-30