[1]邓 军,康付如,雷昌奎,等.基于正交试验和GA-SVM的硅胶发泡工艺参数优化[J].西安科技大学学报,2018,(03):345-350.[doi:10.13800/j.cnki.xakjdxxb.2018.0301]
 DENG Jun,KANG Fu-ru,LEI Chang-kui,et al.Optimization of silicone rubber foaming process parameters based on orthogonal test and GA-SVM[J].Journal of Xi'an University of Science and Technology,2018,(03):345-350.[doi:10.13800/j.cnki.xakjdxxb.2018.0301]
点击复制

基于正交试验和GA-SVM的硅胶发泡工艺参数优化(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2018年03期
页码:
345-350
栏目:
出版日期:
2018-05-15

文章信息/Info

Title:
Optimization of silicone rubber foaming process parameters based on orthogonal test and GA-SVM
文章编号:
1672-9315(2018)03-0345-06
作者:
邓 军12康付如12雷昌奎12肖 旸12刘长春12
1.西安科技大学 安全科学与工程学院,陕西 西安 710054; 2.西安科技大学 陕西省煤火防治重点实验室,陕西 西安 710054
Author(s):
DENG Jun12KANG Fu-ru12LEI Chang-kui12XIAO Yang12LIU Chang-chun12
(1.College of Safety Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 2.Shaanxi Key Laboratory of Prevention and Control of Coal Fire,Xi'an University of Science and Technology,Xi'an 710054,China)
关键词:
正交试验法 遗传算法 支持向量机 硅胶发泡 参数优化
Keywords:
orthogonal test method genetic algorithm support vector machines silicone rubber foaming process parameter optimization
分类号:
TQ 333.93
DOI:
10.13800/j.cnki.xakjdxxb.2018.0301
文献标志码:
A
摘要:
针对硅胶发泡工艺参数优选时存在的耗时、成本高和准确率低等问题,提出了一种基于遗传算法改进的支持向量机优化方法,该方法在正交试验的基础上利用遗传算法和支持向量机的优点,进行了极差、方差分析,建立了基于遗传算法优化的支持向量机模型GA-SVM,利用该模型对硅胶泡沫材料的表观密度进行了优化,并测试了优化后的硅胶泡沫材料微观结构、力学性能及阻燃性能。结果表明:将正交试验、遗传算法与支持向量机三者结合用于硅胶发泡工艺参数的优化可以明显提高发泡工艺设计效率,GA-SVM优化算法得到的预测值与实测值的相对误差在1.1%以内,且GA-SVM优化算法可获得比单纯使用正交试验更优的硅胶发泡方案,为硅胶发泡工艺参数优化提供了一种新的思路。
Abstract:
Aimed at the problem of time-consuming,high cost and low accuracy of silicone rubber foaming process parameters,an improved support vector machine(SVM)optimization method based on genetic algorithm was proposed.This method based on orthogonal test utilized the advantages of genetic algorithm and support vector machine,and then analyzed the range and variance of silicone foaming process parameters by using the method of orthogonal test.The GA-SVM optimization model was established to optimize the apparent density of silica foam material with the optimization model.At last,the microstructure,mechanical properties and flame retardant properties of the optimized silicone foam were tested.The results show that the integration of orthogonal test,support vector machines and genetic algorithm has greatly improved the efficiency of foaming process design.The relative error between the predicted value and the measured value obtained by using the GA-SVM algorithm is within 1.1%.What's more,the GA-SVM optimization algorithm can obtain better silicone foaming scheme than only use the orthogonal test,which provides a new idea for the optimization of silica gel foaming process parameters.

参考文献/References:

[1] 周宁琳.有机硅聚合物导论[M].北京:科学出版社,2000. ZHOU Ning-lin.Introduction to organosilicon polymers[M].Beijing:The Science Publishing,2000.
[2] Patterson B M,Henderson K,Smith Z.Measure of morphological and performance properties in polymeric silicone foams by X-ray tomography[J].Journal of Materials Science,2013,48(5):1986-1996.
[3] 刘 芳,余凤湄,罗世凯,等.液体硅橡胶泡沫材料研究进展[J].有机硅材料,2014,28(1):54-58. LIU Fang,YU Feng-Mei,LUO Shi-kai,et al.Research progress of liquid silicone rubber foam materials[J].Organosilicon Material,2014,28(1):54-58.
[4] 来国桥,李美江.有机硅化学与工艺[M].北京:化学工业出版社,2011. LAI Guo-qiao,LI Mei-jiang.Organic silicon chemistry and technology[M].Beijing:Chemical Industry Press,2011.
[5] 黄 珊.环保型阻燃硅橡胶海绵材料的制备[D].广州:华南理工大学,2003. HUANG Shan.Preparation of environmental friendly flame retardant silicone rubber sponge material[D].Guangzhou:South China University of Technology,2003.
[6] Song L,Lu A,Feng P,et al.Preparation of silicone rubber foam using supercritical carbon dioxide[J].Materials Letters,2014,121(121):126-128.
[7]Hong I K,Lee S.Microcellular foaming of silicone rubber with supercritical carbon dioxide[J].Korean Journal of Chemical Engineering,2014,31(1):166-171.
[8]张长生,罗世凯,石耀刚,等.混合型泡孔结构硅橡胶泡沫的制备与压缩性能[J].机械工程材料,2010,34(9):34-36. ZHANG Chang-sheng,LUO Shi-kai,SHI Yao-gang,et al.Preparation and compression properties of silicon rubber foam with mixed cell structure[J].Materials for Mechanical Engineering,2010,34(9):34-36.
[9]Jawhar M C D,Blanc D,Chaumont P,et al.Study of the coalescence mechanisms during silicone foaming[J].Macromolecular Materials and Engineering,2014,299(3):336-343.
[10]Verdejo R,Saiz-Arroyo C,Carretero-Gonzalez J,et al.Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets[J].European Polymer Journal,2008,44(9):2790-2797.
[11]郑生荣,辛 勇.注射工艺参数的快速确定方法[J].模具工业,2003,29(12):9-13. ZHENG Sheng-rong,XIN Yong.Rapid determination method of injection process parameters[J].Mold Industrial,2003,29(12):9-13.
[12]孙 林,杨世元.基于正交试验和支持向量机的参数设计方法研究[J].中国机械工程,2011,22(8):971-975. SUN Lin,YANG Shi-yuan.Study on parameter design based on orthogonal test and support vector machine[J].China Mechanical Engineering,2011,22(8):971-975.
[13]刘希亮,赵学胜,陆锋,等.基于GA-SVM的露天矿抛掷爆破抛掷率预测[J].煤炭学报,2012,37(12):1999-2005. LIU Xi-liang,ZHAO Xue-Sheng,LU Feng,et al.A GA-SVM based model for throwing rate prediction in the open-pit cast blasting[J].Journal of China Coal Society,2012,37(12):1999-2005.
[14]杨 雄,龚志敏.水射流钻头喷嘴电火花线切割加工工艺正交优化试验[J].石油天然气学报,2010,32(6):173-176. YANG Xiong,GONG Zhi-min.Orthogonal experimental optimization of EDM process of water jet bit nozzle[J].Journal of Oil and Gas Technology,2010,32(6):173-176.
[15]刘春波,王鲜芳,潘 丰.基于蚁群优化算法的支持向量机参数选择及仿真[J].中南大学学报:自然科学版,2008,39(6):1309-1313. LIU Chun-bo,WANG Xian-fang,PAN Feng.Parameters selection and stimulation of support vector machines based on ant colony optimization algorithm[J].Journal Central South University:Natural Science Edition,2008,39(6):1309-1313.
[16]王安义,郭世坤.最小二乘支持向量机在信道均衡中的应用[J].西安科技大学学报,2014,34(5):591-595. WANG An-yi,GUO Shi-kun.Application of least squares support vector machine in channel equalization[J].Journal of Xi'an University of Science and Technology,2014,34(5):591-595.
[17]吴正毅.测试技术与测试信号处理[M].北京:清华大学出版社,1997. WU Zheng-yi.Test technology and test signal processing[M].Beijing:Tsinghua University Press,1997.
[18]Rumelhart D E,MeClelland J L.Parallel distributed processing explorations in the microstructure of cognition[M].Cambridge M A:MIT Press,1986.

相似文献/References:

[1]王燕妮,王建平.约束条件下的优选进化目标跟踪算法分析[J].西安科技大学学报,2017,(04):559.[doi:10.13800/j.cnki.xakjdxxb.2017.0416]
 WANG Yan-ni,WANG Jian-ping.Analysis of target tracking algorithm of preferred evolutionary under constraints[J].Journal of Xi'an University of Science and Technology,2017,(03):559.[doi:10.13800/j.cnki.xakjdxxb.2017.0416]
[2]高 宁,高彩云,吴良才.GPS高程迭加拟合模型的研究[J].西安科技大学学报,2009,(03):339.
 GAO Ning,GAO Cai-yun,WU Liang-cai.Research of combined model for GPS height[J].Journal of Xi'an University of Science and Technology,2009,(03):339.
[3]王生全,刘柏根,张召召,等.遗传算法的BP网络模型进行瓦斯涌出量预测[J].西安科技大学学报,2012,(01):51.
 WANG Sheng-quan,LIU Bo-gen,ZHANG Zhao-zhao,et al.Prediction of gas emission quantity of mining faces based on genetic BP neutral network optimal model[J].Journal of Xi'an University of Science and Technology,2012,(03):51.

备注/Memo

备注/Memo:
收稿日期:2017-06-10 责任编辑:刘 洁
基金项目:国家自然科学基金(51134019)
通信作者:邓 军(1970-),男,四川大竹人,教授,博士生导师,E-mail:dengj518@xust.edu.cn
更新日期/Last Update: 2018-06-30