[1]薛 河,崔英浩,赵凌燕,等.压水堆一回路环境中304不锈钢的蠕变特性分析[J].西安科技大学学报,2018,(01):156-161.[doi:10.13800/j.cnki.xakjdxxb.2018.0122]
 XUE He,CUI Ying-hao,ZHAO Ling-yan,et al.Creep characteristics analysis of 304 stainless steel in pressured water reactor primary circuit[J].Journal of Xi'an University of Science and Technology,2018,(01):156-161.[doi:10.13800/j.cnki.xakjdxxb.2018.0122]
点击复制

压水堆一回路环境中304不锈钢的蠕变特性分析(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2018年01期
页码:
156-161
栏目:
出版日期:
2018-01-15

文章信息/Info

Title:
Creep characteristics analysis of 304 stainless steel in pressured water reactor primary circuit
文章编号:
1672-9315(2018)01-0156-06
作者:
薛 河1崔英浩1赵凌燕2唐 伟1倪陈强1
1.西安科技大学 机械工程学院,陕西 西安 710054; 2.西安科技大学 理学院,陕西 西安 710054
Author(s):
XUE He1CUI Ying-hao1ZHAO Ling-yan2TANG Wei1NI Chen-qiang1
1.College of Mechanical and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 2.College of Sciences,Xi'an University of Science and Technology,Xi'an 710054,China
关键词:
304不锈钢 高应力蠕变 本构方程 蠕变行为
Keywords:
304 stainless steel high stress creep constitutive equation creep behavior
分类号:
TG 174.3
DOI:
10.13800/j.cnki.xakjdxxb.2018.0122
文献标志码:
A
摘要:
裂尖结构蠕变应变是核电结构材料应力腐蚀裂纹扩展的主要驱动力之一,为了了解核电结构材料在核电高温水环境下的蠕变特性,本文利用高压釜模拟核电一回路高温高压水环境,对核电结构材料304不锈钢进行了不同应力下的单轴拉伸蠕变实验,基于时间硬化本构模型得出了其在320 ℃下的蠕变本构方程,并结合ABAQUS有限元分析软件建立了高应力下获取蠕变的数值模拟方法。结果表明,应力和时间对蠕变变形有着很大的影响,蠕变速率在初期很大,随着蠕变时间的延长,由于合金加工硬化现象的产生,导致蠕变速率逐渐减少并趋于稳定; 温度一定时,蠕变变形和蠕变速率同样随着应力的增大而增大。利用ABAQUS可以有效获取高应力下蠕变规律的数值模拟方法,研究结果为核电结构材料安全性评定提供了一定的参考作用。
Abstract:
Creep strain is one of the main driving forces that cause environmental assisted cracking in nuclear structure material at crack tip.To understand the creep characteristics of nuclear structure materials,Autoclave was used to simulate the high temperature and high pressure water environment in nuclear power circuit,and the uniaxial tensile creep experiment of 304 stainless steel structural materials under different stress was conducted.Based on the creep test data,the creep constitutive model of 304 stainless steel wasbuilt based on time hardening constitutive model,and the creep experiment method was established under high stress using ABAQUS.Results show that stress and time have a great influence on the creep deformation.The initial creep rate is very high,and the degree of work hardening of the 304 increases with the increasing of time,resulting in the creep rate decreases and tends to be stable.The creep deformation and the creep rate increase with the increase of stress under the constant temperature.The creep numerical simulation method of high stress was established using ABAQUS.Results provide a reference for the safety evaluation of nuclear power materials.

参考文献/References:

[1] 马 成,彭群家,韩恩厚.核电结构材料应力腐蚀开裂的研究现状与进展[J].中国腐蚀与防护学报,2014,34(1): 37-45. MA Cheng,PENG Qun-jia,HAN En-hou.Review of stress corrosion cracking of structural materials in nuclear power plants[J].Journal of Chinese Society for Corrosion and Protection,2014,34(1): 37-45.
[2] Andresen P L,Karen G,Lawrence N J.Stress corrosion cracking of sensitized type 304 stainless steel in 288C water: A five laboratory round robin[M].Indianapdis:John Wiley and Sons,Inc.2013.
[3] Xue H,Sato Y,Shoji T.Quantitative estimation of the growth of environmentally assisted cracks at flaws in light water reactor components[J].Journal of Pressure Vessel Technology,2009,131(1):41-49.
[4] Scully J C.Stress corrosion crack propagation: a constant charge criterion[J].Corrosion Science,1975,15(4): 207-224.
[5] Huang X,Zhang Y,Mei M,et al.A quantitative prediction model of SCC rate for nuclear structure materials in high temperature water based on crack tip creep strain rate[J].Nuclear Engineering and Design,2014,278(8):686-692.
[6] 卢建树,王保峰,张九渊.高温水中不锈钢和镍基合金应力腐蚀破裂研究进展[J].核动力工程,2001,22(3):259-263. LU Jian-shu,WANG Bao-feng,ZHANG Jiu-yuan.A review of stress corrosion cracking studies of stainless steels and nickel base alloys in high temperature water[J].Nuclear Power Engineering,2001,22(3):259-263.
[7] Yi Y,Was G S.Stress and temperature dependence of creep in Alloy 600 in primary water[J].Metallurgical & Materials Transactions A,2001,32(10):2553-2560.
[8] He X,Shoji T.Quantitative prediction of EAC crack growth rate of sensitized type 304 stainless steel in Boiling water reactor environments based on EPFEM[J].Journal of Pressure Vessel Technology,2007,129(3):460-467.
[9] 崔英浩,薛 河,赵凌燕,等.蠕变性能失配对应力腐蚀裂尖力学场的影响[J].热加工工艺,2017(12):81-85. CUI Ying-hao,XUE He,ZHAO Lin-yan,et al.Effect of creep property mismatch on mechanical field at crack tip[J].Hot Working Technology,2017(12):81-85.
[10]Kassner M E,Smith K.Low temperature creep plasticity[J].Journal of Materials Research and Technology,2014,3(3): 280-288.
[11]Yi Y,Was G S.Stress and temperature dependence of creep in Alloy 600 in primary water[J].Metallurgical and Materials Transactions A,2001,32(10):2553-2560.
[12]Jr M M H.Interacting sensitivities of alloy 600 PWSCC to stress intensity factor,yield stress,temperature,carbon concentration,and crack growth orientation Alloy 600[J].Corrosion Science,2017,125(15):152-165.
[13]Shibli I A.Low temperature(360 C)creep crack growth characteristics of a C-Mn steel[J].Materials Science and Engineering A,1988,104:29-35.
[14]Zhang L,Chen K,Du D,et al.Characterizing the effect of creep on stress corrosion cracking of cold worked Alloy 690 in supercritical water environment[J].Journal of Nuclear Materials,2017,492(15):32-40.
[15]Wu R,Sandstr m R,Seitisleam F.Low temperature creep crack growth in low alloy reactor pressure vessel steel[J].Journal of Nuclear Materials,2005,336(336):279-290.
[16]李久林,梁新邦.GB/T2039—1997金属拉伸蠕变及持久试验方法国家标准编制说明[J].冶金标准化与质量,1998(3):4-8. LI Jiu-lin,LIANG Xin-bang.GB/T2039—1997 Test method for tensile creep of metals and sustainable standards presentation[J].Metallur Gical Standardization and Quality,1998(3):4-8.
[17]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007. ZHANG Jun-shan.Material of high temperature deformation and fracture[M].Beijing:Science Press,2007.
[18]余 珂.高温焊接结构稳态蠕变变形速率的研究[D].南昌:南昌大学,2007. YU Ke.Study on the steady-state creep deformation rate for high-temperature weld structures[D].Nanchang: Nanchang University,2007.
[19]Frost H J,Ashby M F.Deformation-mechanism maps:the plasticity and creep of metals and ceramics[M].United Kingdom:Pergamon Press,1982.
[20]韩宁宁,顾剑锋.核电用Inconel 600合金的蠕变行为[J].金属热处理,2016,41(6):1-3. HAN Ning-ning,GU Jian-feng.Creep behavior of Inconel 600 alloy used for nuclear power[J].Heat Treatment of Metals,2016,41(6):1-3.
[21]马 越,彭赫力,陈 源,等.500 ℃下TB2钛合金蠕变本构方程[J].塑性工程学报,2016,23(5):139-143. MA Yue,PENG He-li,CHEN Yuan,et al.Creep constitutive equation for TB2 titanium alloy at 500 ℃[J].Journal of Plasticity Engineering,2016, 23(5):139-143.
[22]朱 智,张立文,顾森东.Hastelloy C-276合金应力松弛实验及蠕变本构方程[J].中国有色金属学报,2012,22(4):1063-1067. ZHU Zhi,ZHANG Li-wen,GU Sen-dong.Stress relaxation test of Hastelloy C-276 alloy and its creep constitutive equation[J].The Chinese Journal of Nonferrous Metals,2012,22(4):1063-1067.
[23]徐连勇,荆洪阳,安俊超,等.P92钢焊接接头蠕变本构关系[J].焊接学报,2009,30(12):29-32. XU Lian-yong,JING Hong-yang,AN Jun-chao,et al.Creep constitutive equations of P92 steel welded joint[J].Transactions of the ChinaWelding Institution,2009, 30(12):29-32.
[24]Sawada K,Tabuchi M,Kimura K.Analysis of long-term creep curves by constitutive equations[J].Materials Science and Engineering A,2009,510(10):190-194.
[25]庄 茁.ABAQUS/Standard有限元软件入门指南[M].北京:清华大学出版社,1998. ZHUANG Zhuo.Introduction guide to finite element software of ABAQUS/Standard[M].Beijing:Tsinghua University Press,1998.
[26]付凯敏,黄晓明.基于ABAQUS的修正Burgers蠕变模型二次开发[J].公路工程,2008,33(3):132-137. FU Kai-min,HUANG Xiao-ming.The secondary development of modified burgers creep model Based on ABAQUS general software[J].Highway Engineering,2008,33(3):132-137.
[27]阎 岩,王思敬,王恩志.基于西原模型的变参数蠕变方程[J].岩土力学,2010,31(10):3025-3035. YAN Yan,WANG Si-jing,WANG En-zhi.Creep equation of variable parameters based on Nishihara model[J].Rock and Soil Mechanics,2010,31(10):3025-3035.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(51475362,11502195,51775427)
通信作者:薛 河(1961-),男,江苏扬州人,教授,博士生导师,E-mail:xuehe1961@163.com
更新日期/Last Update: 2018-03-12