[1]邓 军,李青蔚,肖 旸,等.原煤和氧化煤的低温氧化特性[J].西安科技大学学报,2018,(01):1-7.[doi:10.13800/j.cnki.xakjdxxb.2018.0101]
 DENG Jun,LI Qing-wei,XIAO Yang,et al.Characteristics of low-temperatureoxidation of raw and oxidized coals[J].Journal of Xi'an University of Science and Technology,2018,(01):1-7.[doi:10.13800/j.cnki.xakjdxxb.2018.0101]
点击复制

原煤和氧化煤的低温氧化特性(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2018年01期
页码:
1-7
栏目:
出版日期:
2018-01-15

文章信息/Info

Title:
Characteristics of low-temperatureoxidation of raw and oxidized coals
文章编号:
1672-9315(2018)01-0001-07
作者:
邓 军12李青蔚12肖 旸12王彩萍12
1.西安科技大学 安全科学与工程学院,陕西 西安 710054; 2.西安科技大学 陕西省煤火灾害防治重点实验室,陕西 西安 710054
Author(s):
DENG Jun12LI Qing-wei12XIAO Yang12WANG Cai-ping12
1.College of Safety Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 2.Shaanxi Key Laboratory of Prevention and Control of Coal Fire,Xi'an University of Science and Technology,Xi'an 710054,China
关键词:
安全科学与工程 氧化煤 CO浓度 表观活化能 自由基浓度
Keywords:
safety science and engineering oxidized coal CO concentration apparent activation energy free radical concentration
分类号:
X 936
DOI:
10.13800/j.cnki.xakjdxxb.2018.0101
文献标志码:
A
摘要:
为研究原煤和氧化煤的低温氧化特性,以潘集矿煤样为研究对象,将原煤在90 ℃空气环境中恒温氧化150 min制备氧化煤样。采用程序升温实验装置测定了170 ℃以下原煤和氧化煤低温氧化阶段不同温度下的CO浓度,并基于CO浓度分阶段计算了原煤和氧化煤的表观活化能。此外,通过电子自旋共振设备测定了180 ℃以下原煤和氧化煤低温氧化过程中的自由基浓度。结果表明:原煤和氧化煤的CO浓度和表观活化能均随着温度的升高而增大,且表现出明显的阶段性特征; 原煤和氧化煤的CO浓度和表观活化能在50~60 ℃范围内产生交叉; 50 ℃以下,氧化煤的CO浓度大于原煤,表观活化能小于原煤; 超过60 ℃,氧化煤的CO浓度小于原煤,表观活化能大于原煤。原煤的自由基浓度随着温度的升高而增大,氧化煤的自由基浓度随着温度的升高先降低后升高; 相同温度下,氧化煤的自由基浓度大于原煤,但其自由基浓度的变化速率小于原煤。
Abstract:
To investigate the characteristics of low-temperature oxidation of raw and oxidized coals,coal samples from Panji coal mine in Anhui province were taken as the research object,and oxidized coal was artificially prepared by putting raw coal into incubator at 90 ℃ for 150 minutes.The temperature-programmed experiment was conducted to investigate the CO concentration,and the apparent activation energy during low-temperature oxidation(below 170 ℃)was calculated based on CO concentration.The free radical concentration of raw and oxidized coals below 180 ℃ was measured by electron spin resonance(ESR)experiment.The experimental results show that the CO concentration and apparent activation energy of both raw and oxidized coals increase with the elevated temperature.Meanwhile,the CO concentration and apparent activation energy of raw coal cross with that of oxidized coal between 50 and 60 ℃.The CO concentration of oxidized coal is higher than that of raw coal below 50 ℃,whereas the apparent activation energy is lower.When the temperatureexceeds 60 ℃,the CO concentration of oxidized coal is lower than that of raw coal,whereas the apparent activation energy is higher.The free radical concentration of raw coal increases with the increase of temperature,but the free radical concentration of oxidized coal first decreases and then increases.The free radical concentration of oxidized coal is higher than that of raw coal at the same temperature; however,the change rate of free radical concentration is lower.

参考文献/References:

[1] Strachera G B,Taylorb T P.Coal fires burning out of control around the world:thermodynamic recipe for environmental catastrophe[J].International Journal of Coal Geology,2004,59(1):7-17.
[2]Baris K,Kizgut S,Didari V.Low-temperature oxidation of some Turkish coals[J].Fuel,2012,93(1):423-432.
[3]Yuan L,Smith A C.Experimental study on CO and CO2emissions from spontaneous heating of coals at varying temperatures and O2 concentrations[J].Journal of Loss Prevention in the Process Industries,2013,26(6):1321-1327.
[4]Qi G,Wang D,Zheng K,et al.Kinetics characteristics of coal low-temperature oxidation in oxygen-depleted air[J].Journal of Loss Prevention in the Process Industries,2015,35:224-231.
[5]Liu B,Zhang Z,Zhang H,et al.An experimental investigation on the effect of convection on the ignition behaviour of single coal particles under various O2 concentrations[J].Fuel,2014,116(6):77-83.
[6]Clemens A H,Matheson T W.The role of moisture in the self-heating of low-rank coals[J].Fuel,1996,75(7):891-895.
[7]文 虎,张福勇,金永飞,等.硫对煤自燃特性参数影响的实验研究[J].煤矿安全,2011,42(10):5-7. WEN Hu,ZHANG Fu-yong,JIN Yong-fei,et al.Experiment research on effect of sulfur on characteristic parameters of coal spontaneous combustion[J].Safety in Coal Mines,2011,42(10):5-7.
[8]Watanabe W S,Zhang D K.The effect of inherent and added inorganic matter on low-temperature oxidation reaction of coal[J].Fuel Processing Technology,2001,74(3):145-160.
[9]Taraba B,Peter R,Slov k V.Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures[J].Fuel Processing Technology,2011,92(3):712-715.
[10]Wang D,Dou G,Zhong X,et al.An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal[J].Fuel,2014,117(5):218-223.
[11]Grzybek T,Pietrzak R,Wachowska H.X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content[J].Fuel Processing Technology,2002,S77-78(1):1-7.
[12]Geng W,Kumabe Y,Nakajima T,et al.Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content[J].Fuel Processing Technology,2002,S77-78(1):1-7.
[12]Geng W,Kumabe Y,Nakajima T,et al.Analysis of hydrothermally-treated and weathered coals by y photoelectron spectroscopy(XPS)[J].Fuel,2009,88(4):644-649.
[13]Xia W,Yang J.Changes in surface properties of anthracite coal before and after inside/outside weathering processes[J].Applied Surface Science,2014,313(18):320-324.
[14]Xia W,Xie G,Liang C,et al.Flotation behavior of different size fractions of fresh and oxidized coals[J].Powder Technology,2014,267:80-85.
[15]Jena M S,Biswal S K,Rudramuniyappa M V.Study on flotation characteristics of oxidised Indian high ash sub-bituminous coal[J].International Journal of Mineral Processing,2008,87(1-2):42-50.
[16]Xia W,Yang J.Effect of pre-wetting time on oxidized coal flotation[J].Powder Technology,2013,250(12):63-66.
[17]马 砺,任立峰,艾绍武,等.氯盐阻化剂抑制煤初次和二次氧化特性的实验研究[J].矿业安全与环保,2015,42(1):1-4. MA Li,REN Li-feng,AI Shao-wu,et al.Experimental study of using chlorate inhibitor for inhibiting initial and secondary coal oxidation[J].Mining Safety and Environmental Protection,2015,42(1):1-4.
[18]马 砺,向 崎,任立峰.阻化煤样的初次/二次氧化特性实验研究[J].西安科技大学学报,2015,35(6):702-707. MA Li,XIANG Qi,REN Li-feng.Experimental study on the primary/secondary oxidation characteristics of inhibited coal sample[J].Journal of Xi'an University of Science and Technology,2015,35(6):702-707.
[19]段志勇,王 飞.MgCl2对煤一次氧化与二次氧化影响的实验研究[J].煤矿安全,2017,48(6):13-15. DUAN Zhi-yong,WANG Fei.Influence of MgCl2 on initial oxidation and secondary oxidation of coal[J].Safety in Coal Mines,2017,48(6):13-15.
[20]邓 军,赵婧昱,张嬿妮,等.低变质程度煤二次氧化自燃特性试验[J].煤炭科学技术,2016,44(3):49-54. DENG Jun,ZHAO Jing-yu,ZHANG Yan-ni,et al.Experiment on secondary oxidation spontaneous combustion characteristics of low metamorphic degree coal[J].Coal Science and Technology,2016,44(3):49-54.
[21]邓 军,赵婧昱,张嬿妮,等.不同变质程度煤二次氧化自燃的微观特性试验[J].煤炭学报,2016,41(5):1164-1172. DENG Jun,ZHAO Jing-yu,ZHANG Yan-ni,et al.Micro-characteristics of spontaneous combustion of second oxidation with different rank coals[J].Journal of China Coal Society,2016,41(5):1164-1172.
[22]张辛亥,李青蔚,肖 旸,等.遗煤二次氧化过程中自燃极限参数变化规律试验[J].安全与环境学报,2016,16(4):101-106. ZHANG Xin-hai,LI Qing-wei,XIAO Yang,et al.Experiment study on the limit parameters of the forsaken coal spontaneous combustion in the re-oxidation process[J].Journal of Safety and Environment,2016,16(4):101-106.
[23]邓 军,赵婧昱,张嬿妮,等.陕西侏罗纪煤二次氧化自燃特性试验研究[J].中国安全科学学报,2014,24(1):34-40. DENG Jun,ZHAO Jing-yu,ZHANG Yan-ni,et al.Experimental study on spontaneous combustion characteristics of secondary oxidation Jurassic coal[J].China Safety Science Journal,2014,24(1):34-40.
[24]仲晓星,王德明,尹晓丹.基于程序升温的煤自燃临界温度测试方法[J].煤炭学报,2010,35(S1):128-131. ZHONG Xiao-xing,WANG De-ming,YIN Xiao-dan.Test method of critical temperature of coal spontaneous combustion based on temperature programmed experiment[J].Journal of China Coal Society,2010,35(S1):128-131.
[25]陆 伟,胡千庭,仲晓星,等.煤自燃逐步自活化反应理论[J].中国矿业大学学报,2007,36(1):111-115. LU Wei,HU Qian-ting,ZHONG Xiao-xing,et al.Gradual self-activation reaction theory of spontaneous combustion of coal[J].Journal of China University of Mining and Technology,2007,36(1):111-115.
[26]叶 敏,戴广龙.低温氧化煤自由基的顺磁共振实验研究[J].洁净煤技术,2006,12(1):53-55. YE Min,DAI Guang-long.Investigation of the low temperature oxidation coal free radical with the electron paramagnetic resonance[J].Clean Coal Technology,2006,12(1):53-55.

相似文献/References:

[1]秦忠诚,陈光波,李 谭,等.“AHP+熵权法”的CW-TOPSIS煤矿内因火灾评价模型[J].西安科技大学学报,2018,(02):193.[doi:10.13800/j.cnki.xakjdxxb.2018.0204]
 QIN Zhong-cheng,CHEN Guang-bo,LI Tan,et al.CW-TOPSIS mine internal caused fire evaluation model of “AHP+ entropy weight method”[J].Journal of Xi'an University of Science and Technology,2018,(01):193.[doi:10.13800/j.cnki.xakjdxxb.2018.0204]
[2]潘红宇,董晓刚,张天军,等.单轴压缩下松软煤样破裂损伤演化特性研究[J].西安科技大学学报,2018,(02):202.[doi:10.13800/j.cnki.xakjdxxb.2018.0205]
 PAN Hong-yu,DONG Xiao-gang,ZHANG Tian-jun,et al.Evolution characteristics of soft coal sample fracture damage under uniaxial compression[J].Journal of Xi'an University of Science and Technology,2018,(01):202.[doi:10.13800/j.cnki.xakjdxxb.2018.0205]
[3]姜 华,邵珅菲,宫武旗,等.叶片形状对对旋风机正反风性能影响[J].西安科技大学学报,2018,(02):230.[doi:10.13800/j.cnki.xakjdxxb.2018.0209]
 JIANG Hua,SHAO Shen-fei,GONG Wu-Qi,et al.Forward and reverse aerodynamic performance of different wing-shaped blades of a contra-rotating axial-flow fan[J].Journal of Xi'an University of Science and Technology,2018,(01):230.[doi:10.13800/j.cnki.xakjdxxb.2018.0209]
[4]林海飞,杨二豪,赵鹏翔,等.类岩石材料力学特性参数多元线性回归模型[J].西安科技大学学报,2018,(03):351.[doi:10.13800/j.cnki.xakjdxxb.2018.0302]
 LIN Hai-fei,YANG Er-hao,ZHAO Peng-xiang,et al.Multivariate linear regression model of the mechanical properties of rock-like materials[J].Journal of Xi'an University of Science and Technology,2018,(01):351.[doi:10.13800/j.cnki.xakjdxxb.2018.0302]
[5]赵大龙,田水承,王 璟,等.矿工大五人格特质对煤矿险兆事件上报的影响[J].西安科技大学学报,2018,(03):360.[doi:10.13800/j.cnki.xakjdxxb.2018.0303]
 ZHAO Da-long,TIAN Shui-cheng,WANG Jing,et al.Influence of miners'big-five personality trait on coal mine near-miss reporting[J].Journal of Xi'an University of Science and Technology,2018,(01):360.[doi:10.13800/j.cnki.xakjdxxb.2018.0303]
[6]李 品.中国能源供给安全影响因素研究[J].西安科技大学学报,2018,(03):403.[doi:10.13800/j.cnki.xakjdxxb.2018.0309]
 LI Pin.Influential factors of energy supply security of China[J].Journal of Xi'an University of Science and Technology,2018,(01):403.[doi:10.13800/j.cnki.xakjdxxb.2018.0309]
[7]张 锐,王 亮,高 杰,等.岩浆岩圈闭区煤层钻屑瓦斯解吸指标敏感性研究[J].西安科技大学学报,2018,(03):417.[doi:10.13800/j.cnki.xakjdxxb.2018.0311]
 ZHANG Rui,WANG Liang,GAO Jie,et al.Desorption index sensitivity of drilling cuttings of coal seams in igneous rock trap area[J].Journal of Xi'an University of Science and Technology,2018,(01):417.[doi:10.13800/j.cnki.xakjdxxb.2018.0311]
[8]司 鹄,赵剑楠,胡千庭.大数据理论下的煤与瓦斯突出事故致因分析[J].西安科技大学学报,2018,(04):515.[doi:10.13800/j.cnki.xakjdxxb.2018.0401 ]
 SI Hu,ZHAO Jian-nan,HU Qian-ting.Analysis of causes of coal and gas outburst accidents based on big data theory[J].Journal of Xi'an University of Science and Technology,2018,(01):515.[doi:10.13800/j.cnki.xakjdxxb.2018.0401 ]
[9]王亚超,魏子淇,王彩萍,等.黄铁矿对煤氧化表面官能团的影响[J].西安科技大学学报,2018,(04):585.[doi:10.13800/j.cnki.xakjdxxb.2018.0410 ]
 WANG Ya-chao,WEI Zi-qi,WANG Cai-ping,et al.Effects of pyrite on functional groups during coal oxidation[J].Journal of Xi'an University of Science and Technology,2018,(01):585.[doi:10.13800/j.cnki.xakjdxxb.2018.0410 ]
[10]张景飞,郭 倩,朱同功,等.多场耦合下煤岩渗透率演化规律——以平煤十矿为例[J].西安科技大学学报,2018,(05):713.[doi:10.13800/j.cnki.xakjdxxb.2018.0504]
 ZHANG Jing-fei,GUO Qian,ZHU Tong-gong,et al.Evolution of coal rock permeability with multiphysics coupling——taking PingMei No.10 mine as an example[J].Journal of Xi'an University of Science and Technology,2018,(01):713.[doi:10.13800/j.cnki.xakjdxxb.2018.0504]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(51404191); 陕西省重点科技创新团队计划(2012KCT-09); 陕西省自然科学基金(2016JM5016)
通信作者:邓 军(1970-),男,四川大竹人,教授,博士生导师,E-mail:dengjs18@xust.edu.cn
更新日期/Last Update: 2018-03-12