[1]王子辉,周宏伟,王超圣,等.圆形洞室应力状态及塑性区分析[J].西安科技大学学报,2017,(05):610-616.[doi:10.13800/j.cnki.xakjdxxb.2017.0502]
 WANG Zi-hui,ZHOU Hong-wei,WANG Chao-sheng,et al.Stress state and plastic zone of circular tunnel[J].Journal of Xi'an University of Science and Technology,2017,(05):610-616.[doi:10.13800/j.cnki.xakjdxxb.2017.0502]
点击复制

圆形洞室应力状态及塑性区分析(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2017年05期
页码:
610-616
栏目:
出版日期:
2017-09-30

文章信息/Info

Title:
Stress state and plastic zone of circular tunnel
文章编号:
1672-9315(2017)05-0610-07
作者:
王子辉1周宏伟12王超圣1裴 浩1何树生1
1.中国矿业大学(北京)力学与建筑工程学院,北京 100083; 2.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京 100083
Author(s):
WANG Zi-hui1ZHOU Hong-wei12WANG Chao-sheng1PEI Hao1HE Shu-sheng1
1.School of Mechanics & Civil Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China; 2.State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing),Beijing 100083,China
关键词:
圆形洞室 埋深 FLAC3D 围岩 应力状态 塑性区
Keywords:
Key words:circular tunnel buried depth FLAC3D surrounding rock stress state plastic zone
分类号:
TU 91
DOI:
10.13800/j.cnki.xakjdxxb.2017.0502
文献标志码:
A
摘要:
为了研究圆形洞室开挖后洞壁围岩和工作面前方围岩的应力状态和塑性区范围,采用数值模拟和理论计算相结合的方法,对不同埋深下的圆形洞室进行了FLAC3D模拟,揭示了开挖后的力学特性。结果表明:对于洞壁围岩而言,随着初始应力的增加,最大的切应力不是线性增加的,其增加的幅度在逐渐减小; 而最大切应力与初始应力的比值维持在稳定的范围内。塑性区范围随埋深的增加在逐渐地扩大,但增加的幅度也在减小。对工作面前方围岩而言,切向应力和径向应力逐渐靠近初始应力的速度明显快于洞壁围岩,但其切向应力明显小于洞壁围岩的切向应力; 随着埋深的增加,工作面前方最大切应力与初始应力的比值处于缓慢增加的过程; 随着埋深的增加,工作面前方围岩的塑性区范围比洞壁围岩的大,进一步验证了工作面处存在应力集中现象。 关键词:圆形洞室; 埋深; FLAC3D; 围岩; 应力状态; 塑性区
Abstract:
Abstract:In order to have a better understanding of the stress state and plastic zone extent of surrounding rock and rock mass in front of working face of circular cavity under different buried depth,the FLAC3D simulation was carried out combined with theoretical calculation,and the mechanical properties after excavation was revealed.It demonstrates that,for surrounding rock,the maximum tangential stress is not linearly increased with the increase of initial stress,and the amplitude of the increase is gradually decreasing.However,the ratio between maximum tangential stress and initial stress maintains in a narrow extent.The plastic extent is expanding with the increase of buried depth.For rock mass in front of working face,its stress state is similar to that of surrounding,and the tangential stress and radial stress gradually close to the initial stress level is significantly faster than that of surrounding rock.However,the tangential stress is greatly smaller than that of surrounding rock.The ratio between maximum tangential stress and initial stress maintains increases slowly.The plastic zone is similar to that of surrounding rock,but the extent is bigger,so it verifies the stress concentration in the working face.

参考文献/References:

[1] 张春生,侯 靖,朱永生,等.深埋隧洞围岩应力分布与破坏机理[J].现代隧道技术,2011,48(3):7-12. ZHANG Chun-sheng,HOU Jing,ZHU Yong-sheng,et al.Stress distribution and stress-induced failures in surrounding rock mass of deep tunnel[J].Modern Tunnelling Technology,2011,48(3):7-12.
[2] 肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1987. XIAO Shu-fang,YANG Shu-bi.Rock mechanics[M].Beijing:Geological Publishing House,1987.
[3] Hoek E,Brown E T.Empirical strength criterion for rock masses[J].Journal of the Geotechnical Engineering Division,1980,106(9):1 013-1 035.
[4] Hoek E,Brown E T.Underground excavations in rock[M].London:Institution of Mining and Metallurgy,1980.
[5] Priest S D,Brown E T.Probabilistic stability analysis of variable rock slope[J].Institution of Mining and Metallurgy Transations,1983,92:1-12.
[6] 沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006. SHEN Ming-rong,CHEN Jian-feng.Rock mass mechanics[M].Shanghai:Tongji University Press,2006.
[7] 朱素平,周楚良.地下圆形隧道围岩稳定性的粘弹性力学分析[J].同济大学学报:自然科学版,1994,22(3):329-333. ZHU Su-ping,ZHOU Chu-liang.Viscoelastic mechanical analysis of underground circular tunnel surrounding rock stability[J].Journal of Tongji University:Natural Science Edition,1994,22(3):329-333.
[8] 李术才,李树忱,朱维申,等.三峡右岸地下电站厂房围岩稳定性断裂损伤分析[J].岩土力学,2000,21(3):193-197. LI Shu-cai,LI Shu-chen,ZHU Wei-shen,et al.The three gorges underground powerhouse in right bank stability damage analysis[J]Rock and Soil Mechanics,2000,21(3):193-197.
[9] 林海飞,翟雨龙,李树刚,等.新型岩石相似材料物理力学参数影响因素的试验研究[J].西安科技大学学报,2015,35(4):409-414. LIN Hai-fei,ZHAI Yu-long,LI Shu-gang,et al.Experimental study on the influence factors of physical and mechanical parameters of new rock similar materials[J].Journal of Xi'an University of Science and Technology,2015,35(4):409-414.
[10]Itasca Consulting Group.Inc.FLAC-3D.Fast lagrangian analysis of continua in three dimensions[M].Minneapolis:Itasca Consulting Group.Inc.,1997.
[11]刘 波,韩彦辉.FLAC 原理,实例及应用指南[M].北京:人民交通出版社,2005. LIU Bo,HAN Yan-hui.FLAC principle,examples and application guide[M].Beijing:China Communications Press,2005.
[12]Kumar P.Infinite elements for numerical analysis of underground excavations[J].Tunnelling and Underground Space Technology,2000,15(1):117-124.
[13]Charles Fairhuest,Juemin Pei.A comparison between the distinct elements method and finite element method for analysis of stability of an excavation in jointed rock[J].Tunneling and Underground Space Technology,1990,5(1):111-118.
[14]杨 同,徐 川,王宝学,等.岩土三轴试验中的粘聚力与内摩擦角[J].中国矿业,2007,16(12):104-107. YANG Tong,XU Chuan,WANG Bao-xue,et al.Cohesion and internal friction angle of rock and soil in three axis test[J].China Mining Industry,2007,16(12):104-107.

相似文献/References:

[1]金大伟,赵永军.煤储层渗透率复合因素数值模型研究[J].西安科技大学学报,2006,(04):460.[doi:10.3969/j.issn.1672-9315.2006.04.006]
 JIN Da-wei ZHAO Yong-jun.Numerical model of compound influencing factor on coal reservoir permeability[J].Journal of Xi'an University of Science and Technology,2006,(05):460.[doi:10.3969/j.issn.1672-9315.2006.04.006]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(51504257) 通讯作者:王子辉(1991-),男,山东聊城人,硕士研究生,E-mail:wangzihui1234@163.com
更新日期/Last Update: 2017-11-08