[1]何树生,周宏伟,王超圣,等.北山花岗岩区微震事件的Fisher判别模型[J].西安科技大学学报,2017,(04):515-521.[doi:10.13800/j.cnki.xakjdxxb.2017.0410]
 HE Shu-sheng,ZHOU Hong-wei,WANG Chao-sheng,et al.Fisher discriminant analysis model for microseismic events of Beishan granite area[J].Journal of Xi'an University of Science and Technology,2017,(04):515-521.[doi:10.13800/j.cnki.xakjdxxb.2017.0410]
点击复制

北山花岗岩区微震事件的Fisher判别模型(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2017年04期
页码:
515-521
栏目:
出版日期:
2017-07-30

文章信息/Info

Title:
Fisher discriminant analysis model for microseismic events of Beishan granite area
文章编号:
1672-9315(2017)04-0515-07
作者:
何树生1周宏伟1王超圣1王子辉1陈 亮2刘建锋3
1.中国矿业大学(北京)力学与建筑工程学院,北京 100083; 2.核工业北京地质研究院 环境工程研究所,北京 100029; 3.四川大学 水利水电学院,四川 成都 610065
Author(s):
HE Shu-sheng1ZHOU Hong-wei1WANG Chao-sheng1 WANG Zi-hui1CHEN Liang2LIU Jian-feng3
1.School of Mechanics & Civil Engineering,China University of Mining and Technology,Beijing 100083,China; 2.Division of Environment Engineering,Beijing Research Institute of Uranium Geology,Beijing 100029,China; 3.School of Water Resources and Hydropower,Sichuan University,Chengdu 610065,China
关键词:
北山花岗岩区 微震事件 震源参数 Fisher判别模型
Keywords:
Key words:Beishan granite area microseismic events seismic parameters FDA model
分类号:
TU 91
DOI:
10.13800/j.cnki.xakjdxxb.2017.0410
文献标志码:
A
摘要:
应用微震监测系统,对北山坑探设施开挖过程进行实时监测。为研究北山花岗岩区微震事件的判别方法,采用Fisher判别分析法,选取地震力矩、微震能量、微震体变势、静应力降和视应力等5个震源参数作为判别因子,综合考虑各震源参数的差异性,建立爆破和微震事件Fisher判别模型,并对该模型进行检验。结果表明:总体判别正确率为86.3%,其中爆破组监测数据正确判别率达100%,微震组监测数据的正确判别率为76.4%,判别结果与事件实际基本相符。该模型简便易行,正确率较高,能够对北山花岗岩区爆破和微震事件进行有效地识别。
Abstract:
Abstract:Based on the Beishan Exploration Tunnel(BET),the excavation progress was real-time monitored by using microseismic monitoring system.In order to research the discriminant method of microseismic events in Beishan granite area,the Fisher discriminant analysis(FDA)method was conducted.By selecting 5 hypocenter parameters as discriminant factors,such as seismic moment,energy,potency,statistical stress drop and apparent stress,and considering their differences comprehensively,the FDA model was established and tested.It shown that,the accuracy of total samples is 86.3%,in which the accuracy of blasting samples is 100%,and the accuracy of microseismic samples is 76.4%.So,owing to the simple and high correct rate of this model,the blasting and microseismic events in Beishan granite area can be indentified effectively.

参考文献/References:

[1] WANG J.High-level radioactive waste disposal in China:update 2010[J].Journal of Rock Mechanics and Geotechnical Engineering,2010,2(1):1-11.
[2] 王 驹,陈伟明,苏 锐,等.高放废物地质处置及其若干关键科学问题[J].岩石力学与工程学报,2006,25(4):801-812. WANG Ju,CHEN Wei-ming,SU Rui,et al.Geological disposal of high-level radioactive waste and its key science issues[J].Journal of Rock Mechanics and Geo-technical Engineering,2006,25(4):801-812.
[3] 唐礼忠,潘长良,杨承祥,等.冬瓜山铜矿微震监测系统及其应用研究[J].金属矿山,2006(10):41-44,86. TANG Li-zhong,PAN Chang-liang,YANG Cheng-xian-g,et al.Establishment and application of microseismicity monitoring system in Dongguashan copper mine[J].Metal Mine,2006(10):41-44,86.
[4] 于 群,唐春安,李连崇,等.基于微震监测的锦屏二级水电站深埋隧洞岩爆孕育过程分析[J].岩土工程学报,2014,36(12):2 315-2 322. YU Qun,TANG Chun-an,LI Lian-chong,et al.Nucleation process of rockburst based on microseismic monitoring of deep-buried tunnels for Jinping Ⅱ Hydropower Station[J].Chinese Journal of Geotechnical Engineering,2014,36(12):2 315-2 322.
[5]Cao A,Dou L,Yan R,et al.Classification of microseismic events in high stress zone[J].Mining Science and Technology(China),2009,19(6):718-723.
[6]来兴平,刘 彪,陈建强,等.急倾斜特厚煤层层间岩柱动力学失稳诱灾倾向预测[J].西安科技大学学报,2015,35(3): 277-283. LAI Xing-ping,LIU Biao,CHEN Jian-qiang,et al.Induced hazard-prone prediction to the intermediate rock-pillar dynamic instability in heavy steep-thick coal seam[J].Journal of Xi'an University of Science and Technology,2015,35(3):277-283.
[7]姜福兴,尹永明,朱权洁,等.单事件多通道微震波形的特征提取与联合识别研究[J].煤炭学报,2014,39(2): 229-237. JIANG Fu-xing,YIN Yong-ming,ZHU Quan-jie,et al.Feature extraction and classification of mining microseismic waveforms via multi-channels analysis[J].Journal of China Coal Society,2014,39(2):229-237.
[8]和雪松,李世愚,沈 萍,等.用小波包识别地震和矿震[J].中国地震,2006(4):425-434. HE Xue-song,LI Shi-yu,SHEN Ping,et al.A wavelet packet approach to earthquake and mining shocks wave classification[J].Earthquake Research in China,2006(4):425-434.
[9]朱权洁,姜福兴,尹永明,等.基于小波分形特征与模式识别的矿山微震波形识别研究[J].岩土工程学报,2012,34(11):2 036-2 042. ZHU Quan-jie,JIANG Fu-xing,YIN Yong-ming,et al.Classification of mine microseismic events based on wavelet-fractal method and pattern recognition[J].Chinese Journal of Geotechnical Engineering,2012,34(11):2 036-2 042.
[10]董陇军,孙道元,李夕兵,等.微震与爆破事件统计识别方法及工程应用[J].岩石力学与工程学报,2016,35(7):1 423-1 433. DONG Long-jun,SUN Dao-yuan,LI Xi-bing,et al.A statistical method to identify blasts and microseismic events and its engineering application[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1 423-1 433.
[11]张文泉,张广鹏,李 伟,等.煤层底板突水危险性的Fisher判别分析模型[J].煤炭学报,2013,38(10):1 831-1 836. ZHANG Wen-quan,ZHANG Guang-peng,LI Wei,et al.A model of Fisher's discrimant analysis for evaluating water inrush risk from coal seam floor[J].Journal of China Coal Society,2013,38(10):1 831-1 836.
[12]董 毅,解海军.许疃矿32块段出水水源Fisher识别分析[J].西安科技大学学报,2016,36(1):75-79. DONG Yi,XIE Hai-jun.Discrimination analysis of water inrush source by Fisher in Xutuan mine 32 block[J].Journal of Xi'an University of Science and Technology,2016,36(1): 75-79.
[13]高卫东.Fisher判别法在煤与瓦斯突出危险程度预测中的应用[J].中国安全科学学报,2010,20(10):26-30. GAO Wei-dong.The application of Fisher discriminant in predicting dangerous level of coal and gas outburst[J].China Safety Science Journal,2010,20(10):26-30.
[14]赵小敏,曹丽文.砂土液化预测的Fisher判别分析模型及应用[J].水文地质工程地质,2012,39(3):129-133. ZHAO Xiao-min,CAO Li-wen.Fisher discriminant analysis model of sand liquefaction and its application[J].Hydrogeology and Engineering Geology,2012,39(3):129-133.
[15]谢建敏.采动诱发断层活化规律及微震监测研究[D].南昌:江西理工大学,2015. XIE Jian-min.The law of Mining induced fault activation and microseismic monitoring research[D].Nanchang:Jiangxi University of Science and Technology,2015.
[16]王 强,李继业,孙 强,等.静态应力降与动态应力降比值方法在东北地区震后趋势判定中的应用[J].防灾科技学院学报,2015,17(2): 36-41. WANG Qiang,LI Ji-ye,SUN Qiang,et al.The application of ratio of the static stress drop and dynamic stress drop in the aftershock trend judgement in Heilongjiang Province and surrounding area[J].Journal of Institute of Disaster Prevention,2015,17(2): 36-41.
[17]刘建坡,石长岩,李元辉,等.红透山铜矿微震监测系统的建立及应用研究[J].采矿与安全工程学报,2012,29(1):72-77. LIU Jian-po,SHI Chang-yan,LI Yuan-hui,et al.Studies on establishment and application of microseismic monitoring system in Hongtoushan copper mine[J].Journal of Mining and Safety Engineering,2012,29(1):72-77.
[18]文得进,胡 松,曾 波,等.Fisher判别技术在火成岩流体识别中的应用[J].油气地球物理,2009,7(4): 38-41. WEN De-jin,HU Song,ZENG Bo,et al.Application of Fisher discriminatory analysis technology to identification of volcanic fluid[J].Petroleum Geophysics,2009,7(4): 38-41.
[19]Andrew R W.Statistical pattern recognition(2nd ed)[M].Malvern:John Wiley and Sons,2002.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(51674266) 通讯作者:何树生(1992-),男,山东泰安人,硕士研究生,E-mail:kdhss1992@163.com
更新日期/Last Update: 1900-01-01