[1]张小艳,刘 萌.R134a螺旋套管冷凝器换热特性及其对热泵性能的影响研究[J].西安科技大学学报,2017,(03):346-351.[doi:10.13800/j.cnki.xakjdxxb.2017.0307]
 ZHANG Xiao-yan,LIU Meng.Heat transfer performance of spiral casing condenser and the runnability of heat pump based on R134a[J].Journal of Xi'an University of Science and Technology,2017,(03):346-351.[doi:10.13800/j.cnki.xakjdxxb.2017.0307]
点击复制

R134a螺旋套管冷凝器换热特性及其对热泵性能的影响研究(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2017年03期
页码:
346-351
栏目:
出版日期:
2017-05-30

文章信息/Info

Title:
Heat transfer performance of spiral casing condenser and the runnability of heat pump based on R134a
文章编号:
1672-9315(2017)03-0346-06
作者:
张小艳刘 萌
西安科技大学 能源学院,陕西 西安 710054
Author(s):
ZHANG Xiao-yanLIU Meng
College of Energy Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China
关键词:
R134a 热泵热水器 螺旋套管冷凝器 换热性能
Keywords:
Key words:R134a heat pump water heater spiral casing condenser heat transfer performance
分类号:
TB 6W
DOI:
10.13800/j.cnki.xakjdxxb.2017.0307
文献标志码:
A
摘要:
为了研究R134a在螺旋套管冷凝器换热性能及其对热泵运行性能的影响,论文采用实验手段,在以水为冷却介质进行循环加热和直流稳态2种条件下,测试了不同进水流量和入口水温状态时R134a在螺旋套管冷凝器内的换热性能和热泵的运行性能。结果表明:循环加热时,同一进水流量随入口水温的升高,冷凝器总换热量、系统制热量和制热性能系数COP减小,而总换热系数和系统输入功率增大; 进水流量从1.19 m3/h增大到2.16 m3/h,入口水温从30 ℃升高到60 ℃时,系统输入功率的增大范围为750~900 W,制热量的减小范围为600~750 W,COP的减小范围为2.8~3.2,同时流量2.16 m3/h的总换热量的减小量是流量1.19 m3/h的2.5倍,总换热系数的增大量是流量1.19 m3/h的2倍。直流稳态时,进水流量从0.26 m3/h增大到0.71 m3/h,总换热量和总换热系数分别增加了15%和41%; 压缩机的排气功力和系统输入功率分别下降了26%和12%,而吸气功力变化较小。
Abstract:
Abstract:In orderto study the influence of R134a on the heat transfer performance of spiral casing condenser and the runnability of heat pump.This paper used water as the medium,and different inflow discharge and inlet water temperature of the condenser in the case of cyclic heating and steady state were tested.The results indicate that in the case of cyclic heating,with the inlet water temperature increase,the total heat transfer rate,the heat output and COPdecrease,and the total heat transfer coefficient and the input power increase.When the inlet water temperature increases from 30 ℃ to 60 ℃ and the inflow discharge increases from 1.19 m3/h to 2.16 m3/h,the input power increases from 750W to 900W,the heat output decreases from 600 W to 750 W,COP decreases from 2.8 to 3.2.The decrement of the total heat transfer rate of 2.16 m3/h water inflow is 2.5 times as much as that of 1.19 m3/h water inflow.The increment of the total heat transfer coefficient is 2 times as much as that of 1.19 m3/h water inflow.At the steady state condition,when the inflow discharges increase from 0.26 m3/h to 0.71 m3/h,the total heat transfer rate and the total heat transfer coefficient increase by 15% and 41%,respectively.The exhaust and the input power decrease by 26% and 12%,respectively,and the suction pressure change less.

参考文献/References:

[1] 郝吉波,王志华,姜宇光,等.空气源热泵热水器系统性能分析[J].制冷与空调,2013,13(1):59-62. HAO Ji-bo,WANG Zhi-hua,JIANG Yu-guang,et al.Analysis of system performance of air source heat pump water heater[J].Refrigeration and Air Conditioning,2013,13(1):59-62.
[2] 张小艳,赫琳洁.空气源热泵热水器螺旋套管冷凝器换热性能的实验研究[J].环境工程,2015,33(S1):824-828. ZHANG Xiao-yan,HE Lin-jie.Experimental study on heat transfer performance of spiral sleeve condenser with air-source heat pump water heater[J].Environmental Engineering,2015,33(S1):824-828.
[3] 王志华,郑煜鑫,郝吉波,等.R134a空气源热泵热水器实验研究与性能分析[J].制冷学报,2014,35(3):71-76. WANG Zhi-hua,ZHENG Yu-xin,HAO Ji-bo,et al.Experimental investigation and performance analysis on R134a air source heat pump water heater[J].Journal of Refrigeration,2014,35(3):71-76.
[4] 张小艳,姜芳芳.螺旋管换热技术的研究现状综述[J].制冷与空调,2014,28(1):75-80. ZHANG Xiao-yan,JIANG Fang-fang.Present situation of the technical research on spiral tube[J].Refrigeration and Air Conditioning,2014,28(1):75-80.
[5]HAN Xiao-hong,QIU Yu,XIU Ying-jie,et al.Cycle performance studies on a new HFC-161/125/143a mixture as an alternative refrigerant to R404A[J].Journal of Zhejiang University Science A:Application Physical and Engineering,2012,13(2):132-139.
[6]孔令健,韩吉田,陈常念,等.卧式螺旋管内过冷沸腾起始点的实验研究[J].工程热物理学报,2014,35(7):1 405-1 409. KONG Ling-jian,HAN Ji-tian,CHEN Chang-nian,et al.An experimental investigation of the onset subcooled boiling in horizontal helical coils[J].Journal of Engineering Thermophysics,2014,35(7):1 405-1 409.
[7]张小艳,赵珊媛,洪珊瑚.水在螺旋盘管内的换热及压降特性研究[J].西安科技大学学报,2014,34(2):174-179. ZHANG Xiao-yan,ZHAO Shan-yuan,HONG Shan-hu.Heat transfer and pressure drop characteristics for water flowing in spiral coil[J].Journal of Xi'an University of Science and Technology,2014,34(2):174-179.
[8]Zaki M,Liu Y Z,Dong Z F,et al.Condensation heat transfer of R134a in helicoidal pipe[C]//Proceedings of the ASME Heat Transfer Division,Baltimore,MD,USA,HTD-351,1997:141-148.
[9]邵 莉,韩吉田,潘继红.R-134a在水平直管和螺旋管内凝结换热特性的实验研究[J].制冷学报,2007,28(2):23-26. SHAO Li,HAN Ji-tian,PAN Ji-hong.Condensation heat transfer of R-134a in horizontal straight and helically cooled tubes[J].Journal of Refrigeration,2007,28(2):23-26.
[10]韩吉田,苏国萍.制冷剂R-134a在螺旋环形通道内凝结换热的实验研究[J].热能动力工程,2005,20(2):134-137. HAN Ji-tian,SU Guo-ping.Experimental investigation of the condensation heat exchange of refrigerant R-134a in a spiral ring-shaped channel[J].Journal of Engineering for Thermal Energy and Power,2005,20(2):134-137.
[11]崔文智,廖 全,辛明道.R134a 在螺旋管内的流动沸腾传热[J].重庆大学学报,2001,24(4):118-121. CUI Wen-zhi,LIAO Quan,XIN Ming-dao.Flow boiling heat transfer of R134a in a helical coiled tube[J].Journal of Chongqing University,2001,24(4):118-121.
[12]张小艳,洪珊瑚.热泵热水器螺旋套管冷凝器中R22的凝结换热性能[J].西安科技大学学报,2015,35(5):585-590. ZHANG Xiao-yan,HONG Shan-hu.Condensation heat transfer performance for R22 flowing in spiral tube-in-tube condenser of heat pump water heater[J].Journal of Xi'an University of Science and Technology,2015,35(5):585-590.

备注/Memo

备注/Memo:
基金项目:陕西省教育厅科研计划项目资助(2013JK1005) 通讯作者:张小艳(1972-),女,陕西华阴人,副教授,E-mail:zhangxy0629@xust.edu.cn
更新日期/Last Update: 1900-01-01