[1]姜 华,翟小伟,罗 毅,等.三维物理模型在长臂采煤工作面采空区通风研究中的应用[J].西安科技大学学报,2017,(03):319-325.[doi:10.13800/j.cnki.xakjdxxb.2017.0303]
 JIANG Hua,ZHAI Xiao-wei,LUO Yi,et al.Application of 3-D physical model in coal mine longwall gob ventilation research[J].Journal of Xi'an University of Science and Technology,2017,(03):319-325.[doi:10.13800/j.cnki.xakjdxxb.2017.0303]
点击复制

三维物理模型在长臂采煤工作面采空区通风研究中的应用(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2017年03期
页码:
319-325
栏目:
出版日期:
2017-05-30

文章信息/Info

Title:
Application of 3-D physical model in coal mine longwall gob ventilation research
文章编号:
1672-9315(2017)03-0319-07
作者:
姜 华12翟小伟1罗 毅2文 虎1
1.西安科技大学 安全科学与工程学院,陕西 西安 710054; 2. 西弗吉尼亚大学 采矿工程系,西弗吉尼亚州 摩根敦 26505
Author(s):
JIANG Hua12ZHAI Xiao-wei1LUO Yi2WEN Hu1
1.College of Safety Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China; 2.Department of Mining Engineering,West Virginia University,Morgantown 26505,USA
关键词:
长臂工作面采空区 物理模型 通风 示踪气体
Keywords:
Key words:longwall gob physical model ventilation tracing gas
分类号:
X 936
DOI:
10.13800/j.cnki.xakjdxxb.2017.0303
文献标志码:
A
摘要:
煤矿长臂工作面采空区中的风流分布对危险区域识别起到重要作用,并且受到上覆岩层垮落效果和井下通风方式影响巨大。为了探究U型通风工作面采空区中风流分布,在相似比为1:300的物理模型中开展了实验研究。该物理模型主要由4部分组成:开采系统、由相似模拟材料堆砌的上覆岩层、通风系统和数据采集系统。随着模型开采和上覆岩层垮落,在采空区形成后引入示踪气体。通过预埋的监测管路测试模型中示踪气体在各点的浓度,从而得到示踪气体浓度分布图。该实验平台和研究方法通过相似材料和模拟开采系统可以获取较为合理的物理上覆岩层和长臂采空区模型。通过示踪气体手段可以得到可视化的采空区风流分布。通过改变通风方式,该系统可应用于针对其他不同通风条件下采空区风流状况研究。
Abstract:
Abstract:Distribution of air movement inside the longwall gob plays an important role in identifying zones of potential hazards and it is largely governed by the overburden caving process and ventilation pattern.In order to gain a good understanding of the air movement in longwall gob with a U-ventilation system,experimental studies have been conducted on a 1:300 scale 3-D physical model.The physical model consists of four parts:mining system,overburden strata constructed with simulant materials,ventilation system and data acquisition system.As the strata subside with mining progress on the physical model,tracing gas is introduced in the intake entry after the gob was formed.Tracing gas concentrations in the gob are measured at multiple pre-installed sampling points for generating the distribution map of the tracing gas in gob.This experiment platform and method can obtain a rational physical overburden and longwall gob model using the simulant material and build-in mining system.Based on the tracing gas approach,this experiment enables the visualization of flow pattern in longwall gob in later mining stage.With the flexibility of ventilation arrangement,this platform can be further developed for research under other ventilation scenarios.

参考文献/References:

[1] Smith A C,Diamond W P,Mucho T P,et al.Bleederless ventilation systems as a spontaneous combustion control measure in US coal mines[M].US Department of the Interior,Bureau of Mines,Information Circular,1994.
[2] Schatzel S,Krog R,Dougherty H.Field study of longwall coal mine ventilation and bleeder performance[J].Trans Soc Min Metal Explor,TP-10-040,2012,330:388-396
[3] Thimons E D,Kissell F N.Tracer gas as an aid in mine ventilation analysis[R].Bureau of Mines,Washington,DC(USA),1974.
[4] Timko R J,Thimons E D.Sulfur hexafluoride as a mine ventilation research tool:recent field applications[M].US Department of the Interior,Bureau of Mines,1982.
[5] Gilmore R C.Computational fluid dynamics modeling of underground coal longwall gob ventilation systems using a developed meshing approach[D].Colorado School of Mines.Arthur Lakes Library,2015.
[6] Yuan L,Smith A C,Brune J F.Computational fluid dynamics study on the ventilation flow paths in longwall gobs[C]//Proceedings of the 11th US/North American Mine Ventilation Symposium,2006.
[7] Esterhuizen G S,Karacan C Ö.A methodology for determining gob permeability distributions and its application to reservoir modeling of coal mine longwalls[C]//SME 2007 Annual Meeting,2007:07-078.
[8] Brune J F.The methane-air explosion hazard within coal mine gobs[J].Transactions of the Society for Mining Metallurgy and Exploration Inc,2014,334(1):376-390.
[9] Ren T,Balusu R,Claassen C.Computational fluid dynamics modelling of gas flow dynamics in large longwall goaf areas[J].International Journal of Obstetric Anesthesia,2011,17(17):374-375.
[10]Lin H.Study on the law of mining-induced fracture evolution of overlying strata and relieved methane delivery and its engineering application in fully-mechanized top coal caving[D].Xi'an:Xi'an University of Science and Technology,2009.
[11]Persily A K,Grot R A,Ventilation system performance evaluation using tracer gas techniques,air infiltration centre,ventilation strategies and measurement techniques[C]//6th AIC Conference Proceedings,England,Air Infiltration Centre,1985:19-26.
[12]Yang W,Sui W,Xia X.Model test of the overburden deformation and failure law in close distance multi-seam mining[J].Journal of Coal Science and Engineering(China),2008,14(2):181-185.
[13]Singh M M,Kendorski F S.Strata disturbance prediction for mining beneath surface water and waste impoundments:Proc 1st conference on ground control in mining,Morgantown,27-29 July 1981,P76-89.Publ Morgantown:West Virginia University,1981[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.Pergamon,1983,20(1):A13.

备注/Memo

备注/Memo:
通讯作者:姜 华(1988-),男,陕西潼关人,博士生,西弗吉尼亚大学采矿工程系研究助理,E-mail:hujiang@mix.wvu.edu
更新日期/Last Update: 1900-01-01