[1]张卫国,陈 娓,孙 嫚.高维空间平行四边形面积的多方保密计算[J].西安科技大学学报,2016,(05):697-702.[doi:10.13800/j.cnki.xakjdxxb.2016.0515]
 ZHANG Wei-guo,CHEN Wei,SUN Man.Secure multi-party computation of high-dimensional spatial parallelogram area[J].Journal of Xi'an University of Science and Technology,2016,(05):697-702.[doi:10.13800/j.cnki.xakjdxxb.2016.0515]
点击复制

高维空间平行四边形面积的多方保密计算(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2016年05期
页码:
697-702
栏目:
出版日期:
2016-09-30

文章信息/Info

Title:
Secure multi-party computation of high-dimensional spatial parallelogram area
文章编号:
1672-9315(2016)05-0697-06
作者:
张卫国陈 娓孙 嫚
西安科技大学 计算机科学与技术学院,陕西 西安 710054
Author(s):
ZHANG Wei-guoCHEN WeiSUN Man
College of Computer Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China
关键词:
安全多方计算 同态加密 高维向量 空间几何 范数 面积
Keywords:
secure multiparty computation homomorphic encryption high-dimensional vector spatial geometry norm area
分类号:
TP 309
DOI:
10.13800/j.cnki.xakjdxxb.2016.0515
文献标志码:
A
摘要:
几何问题的安全多方计算在保密位置判断、保密数据查询等方面有着重要的应用价值。但目前大多数几何问题的研究主要集中在平面几何,很少涉及空间几何。文章从一个军事实际问题出发,首先利用两方置换协议和同态加密算法保密计算了空间几何中2个高维向量差的范数,并用模拟范例证明了此方案的安全性。接着,利用此方案设计了空间几何中平行四边形面积的保密计算协议。不同于以往的方案,协议使用了一个有关安全两方置换问题的转化技巧,避免了以往方案中出现的高次模指数运算,因此效率较高; 由于方案不局限于三维向量,适合于任何高维向量,更具有普遍意义。
Abstract:
Secure multi-party computation of the geometric problems is significant to privacy-preserving location estimation,data query,etc.But most of the existing literatures of geometric problems have focused on plane geometry,while few have addressed spatial geometry.In this paper,motivated from a military problem,we first compute securely the norm of high-dimensional vector difference using homomorphic encryption and secure two-party permutation protocol,and further prove the security of this scheme with simulation paradigm.Then,we design the privacy-preserving protocol of the area of parallelogram in spatial geometry using this scheme,so as to solve our real problem.Unlike the previously known,our scheme adopts a technique of conversion about secure two-party permutation protocol,which avoids high-order modular exponentiation in other known schemes.It makes our scheme efficient; In addition,our scheme is suitable for any high-dimensional vector except three-dimensional one,which makes our scheme more universal than others.

参考文献/References:

[1] Yao A C.Protocols for secure computations[C]//Proceedings of 23rd IEEE Symposium on Foundations of Computer Science,1982: 160-164.
[2] Du W L,Atallah M J.Privacy-preserving cooperative scientific computations[C]//Proceedings of 14th IEEE Computer Security Foundations Workshop Lecture,2001: 273-282.
[3] Agrawal R,Srikant R.Privacy-preserving data mining[C]//Proceedings of ACM International Conference on Management of Data and Symposium on Principles of Database Systems,2000:439-450.
[4] 杨高明,杨 静,张健沛.聚类的(A,k)-匿名数据发布[J].电子学报,2011,39(8):1 941-1 946. YANG Gao-ming,YANG Jing,ZHANG Jian-pei.Achieving(alpha,k)-匿名数据发布[J].电子学报,2011,39(8):1 941-1 946. YANG Gao-ming,YANG Jing,ZHANG Jian-pei.Achieving(alpha,nonymity via clustering in data publishing[J].Acta Electronica Sinica,2011,39(8): 1 941-1 946.
[5] Atallah M J,Du W L.Secure multi-party computational geometry[C]//Lecture Notes in Computer Science 2125.NY:Springer,2001:165-179.
[6] Shundong L,Yiqi D.Secure two-party computational geometry[J].Journal of Computer Science and Technology,2005,20(2):258-263.
[7] Goldwasser.Multi-party computations: past and present[C]//Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing,1997: 1-6.
[8] Goldreich O,Micali S,Wigderson A.How to play ANY mental game[C]//Proceedings of the 19th Annual ACM Conference on Theory of Computing,1987: 218-229.
[9] Goldreich O.Foundations of cryptography:basic applications[M].London: Cambridge University Press,2004.
[10]Du W L,Atallah M J.Secure multi-party computation problems and their applications: A review and open problems[C]//Proceedings of New Security Paradigms Workshop 2001,2001: 11-20.
[11]荆巍巍.安全多方计算中若干基础协议及应用的研究[D].合肥:中国科学技术大学,2008. JING Wei-wei.Research on several basic protocols and applications of secure multi-party computation[D].Hefei:University of Science and Technology of China,2008.
[12]Shundong L,Chunying W,Daoshun W,et al.Secure multiparty computation of solid geometric problems and their applications[J].Information Sciences,2014,282: 401-413.
[13]Das A S,Srinathan K.Privacy preserving cooperative clustering service[C]//Advanced Computing and Communications,2007.ADCOM 2007.International Conference on.IEEE,2007:435-440.
[14]鲁磊纪,黄宏升,方 治.隐私保护的计算三角形面积协议[J].电脑知识与技术,2009,33(5):9 168-9 170. LU Lei-ji,HUANG Hong-sheng,FANG Zhi.A privacy-preserving protocol on calculating the area of triangle[J].Computer Knowledge and Technology,2009,33(5):9 168-9 170.
[15]Rivest R L,Adleman L,Dertouzos M L.On data banks and privacy homomorphisms[J].Foun-dations of Secure Computation,1978,4(11): 169-180.
[16]Paillier P.Public-key cryptosystems based on composite degree residuosity classes[C]//Lecture Notes in Computer Science 1592.NY: Springer,1999: 223-238.
[17]Du W,Atallah M J.Privacy-preserving cooperative statistical analysis[C]//Computer Security Applications Conference,2001.ACSAC 2001.Proceedings 17th Annual.IEEE,2001:102-110.

相似文献/References:

[1]陈振华,黄路琪,史晓楠,等.信息论安全的3个基础外包计算协议及空间位置关系保密判定[J].西安科技大学学报,2019,(06):1049.
 CHEN Zhen-hua,HUANG Lu-qi,SHI Xiao-nan,et al.Three basic information-theoretic secure protocols foroutsourcing computing and privacy-preservingdetermination of spatial location-relation[J].Journal of Xi'an University of Science and Technology,2019,(05):1049.

备注/Memo

备注/Memo:
收稿日期:2016-01-19 责任编辑:高 佳
基金项目:国家自然科学基金(U1261114)
通讯作者:张卫国(1964-),男,陕西渭南人,教授,E-mail:chenwei_xust@163.com
更新日期/Last Update: 2015-10-30