[1]王湃,吕元杰,汪梅.一种基于智能手机与脑-机接口技术的环境控制系统[J].西安科技大学学报,2015,(05):656-661.[doi:10.13800/j.cnki.xakjdxxb.2015.0521]
 WANG Pai,LV Yuan-jie,WANG Mei.An environmental control system based on smart mobile phone and brain computer interface technology[J].Journal of Xi'an University of Science and Technology,2015,(05):656-661.[doi:10.13800/j.cnki.xakjdxxb.2015.0521]
点击复制

一种基于智能手机与脑-机接口技术的环境控制系统(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2015年05期
页码:
656-661
栏目:
出版日期:
2015-10-08

文章信息/Info

Title:
An environmental control system based on smart mobile phone and brain computer interface technology
作者:
王湃吕元杰汪梅
西安科技大学 电气与控制工程学院,陕西 西安 710054
Author(s):
WANG PaiLV Yuan-jieWANG Mei
College of Electrical and Control Engineering,Xi'an University of Science and Technology,Xi'an 710054,China
关键词:
脑机-接口 稳态视觉诱发电位 智能手机 蓝牙
Keywords:
brain computer interface steady state visual evoked potential smart mobile phone bluetooth
分类号:
TP 399
DOI:
10.13800/j.cnki.xakjdxxb.2015.0521
文献标志码:
A
摘要:
为帮助重症患者实现与外部环境交流,基于稳态视觉诱发电位原理,将脑-机接口与智能手机相结合,开发一种利用脑电波进行环境控制的智能系统。本系统采用稳态视觉诱发电位技术设计脑-机接口,采用Android系统的智能手机作为控制终端,以FFT算法提取脑电波信号的频率特征,用于目标识别。采用蓝牙技术实现控制终端与被控对象之间无线通信。本系统可以实现:拨打电话、家电控制等功能。针对不同的系统功能进行3组试验,结果表明:本系统的识别准确率最高可达100%,最差准确率达:72.4%.与传统的BCI系统相比,本系统具有可穿戴、移动性好、识别率高等特点。
Abstract:
To help critically ill patients communicate with outside environment,we combine the brain-computer interface with smart phone based on the theory of steady state visual evoked potential(SSVEP)to develop an intelligent system which controls the environment by using the electroencephalograph(EEG).This system uses the steady-state visual evoked potential technology to design a brain computer interface,and takes the intelligent android mobile phone as the control terminal.It applies FFT algorithm to extract the frequency characteristic of EEG signals for target recognition,and realizes wireless communication between the control terminal and controlled object by using Bluetooth technology.By using the intelligent system,patients may make a telephone call and control household appliances and so on.We design three groups of test according to the different function of the system The experimental results show that the system has the highest accuracy of 100% in recognition,and the lowest accuracy of 72.4%.Compared with the traditional BCI system,this system has the characteristics of wearable,mobile,and higher recognition rate.

参考文献/References:

[1] 吴 琪,黄林欢,姚晓黎,等.肌萎缩侧索硬化患者轻度认知功能损害[J].中华神经科,2011,44(6):400-404. WU Qi,HUANG Lin-huan,YAO Xiao-li,et al.A clinical study on mild cognitive impairment in amyotrophic lateral sclerosis[J].China Journal of Neurol,2011,44(6):400-404.
[2] 王 平,秦 威.基于蓝牙无线传感网络的病人身体状态实时监护系统设计[J].西安科技大学学报,2015,35(1):128-131. WANG Ping,QIN Wei.Real time monitoring system for patients based on bluetooth wireless sensor network[J].Journal of Xi'an University of Science and Technology 2015,35(1):128-131.
[3] 李明明.用于环境监测领域无线传感器网络中的数据压缩编码算法[J].西安科技大学学报,2011,31(5):617-621. LI Ming-ming.A data compression algorithm for environmentmonitoring wireless sensor network[J].Journal of Xi'an University of Science and Technology,2011,31(5):617-620.
[4]李白萍,侯媛彬,王 爽,等.用于危险环境监控的无线传感器网格体系结构[J].西安科技大学学报,2011,31(2):223-226. LI Bai-ping,HOU Yuan-bin,WANG Shuang,et al.A wireless sensor grid architecture suitable for dangerous environment monitoring[J].Journal of Xi'an University of Science and Technology,2011,31(2):223-226.
[5] Regan D.Human brain electrophysiology:evoked potentials and evoked magnetic fields in science and medicine[M].New York:Elsevier Science Publishing,1989.
[6] Aughan T M,Heetderks W J,Trejo L J.Brain-computer interface technology:A review of the second international meeting[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(2):94-96.
[7]Bayliss J D,Ballard D H.A virtual reality testbed for brain-computer interface research[J].IEEE Transactions on Rehabilitation Engineering,2000,8(2):188-190.
[8] Schalk G,McFarland D J,Hinterberger T,et al.BCl 2000:a general-purpose brain computer interface(BCI)system[J].IEEE Trans Biomed Eng,2004:51(6):1 034-1 043.
[9] 周 鹏,曹红宝,熊 屹,等.基于脑机接口的智能康复系统的设计[J].计算机工程与应用,2007,43(26):1-4. ZHOU Peng,CAO Hong-Bao,XIONG Yi,et al.Design of intelligent rehabilitation system based on brain-computer interface[J].Computer Engineering and Applications,2007,43(26):1-4.
[10]吴 边,苏 煜,张剑慧,等.基于P300电位的新型BCI中文输入虚拟键盘系统[J].电子学报,2009,37(8):1 733-1 738. WU Bian,SU Yu,ZHANG Jian-hui,et al.A virtual Chinese keyboard BCI system based on P300 potentials[J].Acta Electronic Sinica,2009,37(8):1 733-1 738.
[11]许敏鹏,张力新,明 东,等.基于SSVEP 阻断与P300特征的混合范式脑-机接口[J].电子学报,2013,41(11):2 247-2 251. XU Min-peng,ZHANG Li-xin,MING Dong,et al.A hybrid BCI based on the combination of SSVEP blocking and P300 features[J].Acta Electronic Sinica,2013,41(11):2 247-2 251.
[12]王新洲,林明华,花向红,等.基于快速傅立叶变换的打桩锤击信息的识别[J].武汉大学学报:信息科学版,2008,33(7):16-19. WANG Xin-Zhou,LIN Ming-Hua,HUA Xiang-Hong,et al.Identification information of piling hammer based on the fast fourier transform[J].Geomatics and Information Science of Wuhan University,2008,33(7):16-19.
[13]宾光宇,张雅静,高小榕.相位同步方法用于稳态视觉诱发电位的测量[J].清华大学学报,2008,48(9):1 507-1 510. BIN Guang-yu.ZHANG Ya-jing,GAO Xiao-rong.Steady state visual evoked potential measurement using a phase-locking method[J].Journal of Tsinghua University Science and Technology,2008,48(9):1 507-1 510.

备注/Memo

备注/Memo:
基金项目:国家自然基金项目(51405381); 陕西省工业科技攻关基金项目(2015GY020) 通讯作者:王 湃(1979-),男,辽宁丹东人,博士,讲师,E-mail:wangpai2013@xust.edu.cn
更新日期/Last Update: 2015-09-15