[1]吴延海,张 烨,马孟新.基于NSCT变换和压缩感知的图像融合[J].西安科技大学学报,2015,(04):480-485.
 WU Yan-hai,ZHANG Ye,MA Meng-xin.Image fusion based on NSCT trasformation and compressive sensing[J].Journal of Xi'an University of Science and Technology,2015,(04):480-485.
点击复制

基于NSCT变换和压缩感知的图像融合(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2015年04期
页码:
480-485
栏目:
出版日期:
2015-08-30

文章信息/Info

Title:
Image fusion based on NSCT trasformation and compressive sensing
文章编号:
10.13800/j.cnki.xakjdxxb.2015.0413
作者:
吴延海张 烨马孟新
西安科技大学 通信与信息工程学院,陕西 西安 710054
Author(s):
WU Yan-haiZHANG YeMA Meng-xin
College of Communication and Information Engineering,Xi'an University of Science and Technology,Xi'an 710054,China
关键词:
图像融合 压缩感知 非下采样contourlet变换 可见光 红外
Keywords:
image fusion compressive sensing Non-subsample contourlet transform infrared images visible light images
分类号:
TP 391.41
文献标志码:
A
摘要:
针对NSCT变换分解得到的各个方向子带稀疏度不同的问题,文中提出了1种基于改进的CS_NSCT图像融合方法。首先对待融合图像进行NSCT分解,接着对得到的高频分量采用自适应的压缩感知方法进行压缩,并在压缩域融合后重构; 对低频分量采用DCT能量准则融合,最后对融合后的高低频分量进行NSCT重构。仿真实验结果表明,文中方法在减少了数据量的同时有效提高了图像的熵值、标准偏差、平均梯度等指标。
Abstract:
Through NSCT transformation,an image will be decomposed into a low-pass sub-band and K-direction sub-bands,but the sparsity is different for each direction.Therefore,this paper proposes an improved CS_NSCT way for fusion of infrared and visible light images.First,making a NSCT decomposition to the infrared image and visible light image,next doing compression to high frequency sub-bands by adaptive compressive sensing,and after that to fuse them.For the low-pass sub-band,it uses block DCT of high frequency energy rule to fuse them.Finally,it gets fusion image by reconstruction of compressive sensing and inverse NSCT transformation for data which has been fused.The simulation shows that it not only improves parameters,such as entropy,and standard deviation,average gradient,but reduces the amount of data effectively.

参考文献/References:

[1] LI Shu-tao,Bin Yang,HU Jian-wen.Performance comparison of different multi-resolution transforms for image fusion[J].Information Fusion,2011,12(2):11-13. [2] Do M N,Vetterli M.The contourlet transform:an efficient directional multiresolution image representation [J].Insititute of Electrical and Electronics Engineers Transactions on Image Processing,2005:14(12):2 091-2 106. [3] YI Chai,LI Hua-feng,LI Zhao-fei.Multifocus image fusion scheme using focused region detection and multiresolution[J].Optics Communications,2011,284(19):14-16. [4] Christoph Stiller,Fernando Puente León,Marco Kruse.Information fusion for automotive applications-Anoverview[J].Information Fusion,2011,12(4):244-252. [5] Donoho D L.Compressed sensing[J].Insititute of Electrical and Electronics Engineers Transactions on Information Theory,2006,52(4):1 289-1 306. [6] Lu Y,Do M N.CRISP-Contourlet:A critically sampled directional multiresolution image representation [J].Proceeding of Society of Photo-Optical Instrumentation Engineers,2003,5 207(2):655-665. [7] 才 溪.多尺度图像融合理论与方法[M].北京:电子工业出版社,2014. CAI Xi.Multiscale image fusion[M].Beijing:Publishing House of Electronics Industry,2014. [8] 石光明,刘丹华,高大化,等.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1 070-1 081. SHI Guang-ming,LIU Dan-hua,GAO Da-hua,et al.Advances in theory and application of compressed sensing[J].Electronic Journal,2009,37(5):1 070-1 081. [9] Donoho D L.Compressed Sensing [J].Insititute of Electrical and Electronics Engineers Transactions on Information Theory,2006,52(4):1 289-1 306. [10]马孟新,吴延海,张 昊,等.图像分块的贝叶斯压缩感知算法研究[J].西安科技大学学报,2014,34(5):625-628. MA Meng-xin,WU Yan-hai,ZHANG Hao,et al.Compressive sensing of block images based on Bayesian estimation[J].Journal of Xi'an University of Science and Technology,2014,34(5):625-628. [11]闫 迪.基于压缩感知理论的图像重构与图像融合算法研究[D].西安:西安科技大学,2013. YAN Di.Research on image recovery and fusion based on compressed sensing[D].Xi'an:Xi'an University of Science and Technology,2013. [12]Li X,Qin S Y.Efficient fusion for infrared and visible images based on compressive sensing principle[J].International Esports Tournament Image Process,2011,5(2):141-147. [13]邢亚琼,王晓丹,毕 凯,等.基于非下轮廓波变换和压缩感知的图像融合方法[J].控制与决策,2014,29(4):585-591. XING Ya-qiong,WANG Xiao-dan,BI Kai,et al.Fusion technique for images based on non-subsampled contourlet transform and compressive sensing[J].Control and Decision,2014,29(4):585-591. [14]Riehard Baraniuk,Mark Davenport,Ronald DeVore,et al.A simple proof of the restricted Isometry Property for random matrices[J].Constructive Approximation,2008,28(3),253-263. [15]Candès E J,Tao T.Decoding by linear programming[J].Insititute of Electrical and Electronics Engineers Transactions on Information Theory,2005,51(12):4 203-4 215. [16]楚 恒,朱维乐.基于DCT变换的图像融合方法研究[J].光学精密工程,2006,14(2):266-273. CHU Heng,ZHU Wei-le.Image fusion algorithms using discrete cosine transform[J].Optics and Precision Engineering,2006,14(2):266-273.

相似文献/References:

[1]王同安,王元红.基于VMD的瓦斯信号自适应压缩感知算法[J].西安科技大学学报,2019,(02):366.[doi:10.13800/j.cnki.xakjdxxb.2019.0226 ]
 WANG Tong-an,WANG Yuan-hong.Gas signal adaptive compressed sensing algorithmbased on VMD[J].Journal of Xi'an University of Science and Technology,2019,(04):366.[doi:10.13800/j.cnki.xakjdxxb.2019.0226 ]
[2]郝 帅,范文璐,付周兴,等.基于压缩感知的小电流接地系统故障选线方法[J].西安科技大学学报,2020,(02):330.
 HAO Shuai,FAN Wen-lu,FU Zhou-xing,et al.Fault line selection method for small current grounding system based on compressed sensing[J].Journal of Xi'an University of Science and Technology,2020,(04):330.
[3]张 烨,刘晓佩.一种改进的压缩感知图像融合方法[J].西安科技大学学报,2018,(04):690.[doi:10.13800/j.cnki.xakjdxxb.2018.0425 ]
 ZHANG Ye,LIU Xiao-pei.An improved compressive sensing image fusion method[J].Journal of Xi'an University of Science and Technology,2018,(04):690.[doi:10.13800/j.cnki.xakjdxxb.2018.0425 ]

备注/Memo

备注/Memo:
收稿日期:2015-04-20 责任编辑:高 佳 基金项目:国家自然科学基金资助项目(61302133); 陕西省科技厅科技攻关计划项目(2011K09-36 & 2012K06-16); 陕西省教育厅科学研究计划项目(12JK0528) 通讯作者:吴延海(1957-),男,山东菏泽人,教授,E-mail:wyh7388@163.com
更新日期/Last Update: 1900-01-01