[1]郭 昕.统计区域合并的彩色图像分割算法[J].西安科技大学学报,2015,(03):392-396.
 GUO Xin.Color image segmentation method of statistical region merging[J].Journal of Xi'an University of Science and Technology,2015,(03):392-396.
点击复制

统计区域合并的彩色图像分割算法(/HTML)
分享到:

西安科技大学学报[ISSN:1672-9315/CN:61-1434/N]

卷:
期数:
2015年03期
页码:
392-396
栏目:
出版日期:
2015-06-30

文章信息/Info

Title:
Color image segmentation method of statistical region merging
文章编号:
10.13800/j.cnki.xakjdxxb.2015.0320
作者:
郭 昕
西安交通大学 电子与信息工程学院,陕西 西安 710049
Author(s):
GUO Xin
School of Electronic and Information Engineering,Xi'an Jiaotong University,Xi'an 710049,China
关键词:
彩色图像分割 观测图像 统计区域 合并预测
Keywords:
color image segmentation observed image statistical region merging prediction
分类号:
TP 391.4
文献标志码:
A
摘要:
针对传统区域合并算法中存在的分割复杂度高、分割精度低的问题,提出一种将统计理论应用于区域合并的彩色图像分割算法,该算法通过建立图像生成模型,得到新的合并预测准则,有效地避免合并过程中可能导致的区域边界破坏,提高分割精度,降低分割复杂度。在对已有算法分析的基础上,提出基于古典概率理论的图像生成模型,重点介绍区域合并思想与统计理论相结合的合并预测准则,该准则是逐步松弛的,确保在无像素遗漏的同时分割的精度。算法不但考虑了像素的相似性,还考虑了空间上的邻接性,因此可以有效消除孤立噪声的干扰。通过与基于连接图的系统工程分割方法比较发现,文中算法的运算时间具有明显优势。实验结果表明,该算法还具有较高的分割精确度和较强的鲁棒性,分割尺度可调。
Abstract:
Aiming at the traditional region merging segmentation algorithm with the problems of high complexity and low accuracy,an image segmentation method based on statistical region merging is proposed.Through the establishment of image generation model,this paper obtains the new merging prediction criteria which effectively avoids the region boundary damage in the merging process,improves the segmentation accuracy and reduces the segmentation complexity.Based on the analysis of existing algorithm,a model of image generation is generated using classical probability theory,then the merging prediction criteria as a blend of the region merging and the statistical property is explained in detail.This criteria is gradually relaxed,ensuring segmentation accuracy without pixel omission.This algorithm not only considers the similarity of pixel but also the adjacency space,therefore it can effectively eliminate the interference of isolated noise.By comparison with the Joint Systems Engineering Group Segmentation Method,this algorithm has obvious advantages in computation time.Experimental results show that the algorithm with the adjustable segmentation scale is of high segmentation accuracy and strong robustness.

参考文献/References:

[1] 李绘卓,范 勇,唐 骏,等.一种非线性变换的双直方图红外线增强方法[J].计算机工程与应用,2014(9):155-159. LI Hui-zhuo,FAN Yong,TANG Jun,et al.A nonlinear transformation of double histogram infrared enhanced method[J].Computer Engineering and Application,2014(9):155-159. [2] 岳改丽,王 栋,杨 蕊.几种边缘检测算子在红外图像处理方面应用研究[J].西安科技大学学报,2012,32(4):500-504. YUE Gai-li,WANG Dong,YANG Rui.Application of several edge detection operator in infrared images processing[J].Journal of Xi'an University of Science and Technology,2012,32(4):500-504. [3] 邵 明,徐向纮.分水岭变换和统计区域合并的图像分割算法研究[J].中国计量学学报,2012,12(23):373-378. SHAO Ming,XU Xiang-hong.Image watershed transformation and statistical region merging image segmentation algorithm[J].Journal of Chinese Measurement,2012,12(23):373-378. [4] 刘海宾,何希勤,刘向东.基于分水岭和区域合并的图像分割算法[J].计算机应用研究,2007,3(9):158-170. LIU Hai-bin,HE Xi-qin,LIU Xiang-dong.Algorithm for image segmentation based on watershed and region merging[J].Application Research of Computers,2007,3(9):158-170. [5] McDiarmid C,Habib M,McDiarmid C,et al.Probabilistic methods for algorithmic discrete math[M].Springer-Verlag Berlin and Heidelberg Gmb H & Co. K,1998. [6] 许元飞.基于纹理的图像检索算法[J].西安科技大学学报,2013,33(4):470-474. XU Yuan-fei.The image retrieval algorithm based on texture[J].Journal of Xi'an University of Science and Technology,2013,33(4):470-474. [7] 段 娜,刘力政.基于最大间隔符号特征的车牌字符分割算法[J].西安科技大学学报,2014,34(5):620-624. DUAN Na,LIU Li-zheng.Characteristics segmentation of license plate based on the features of maximum interval segmentation method[J].Journal of Xi'an University of Science and Technology,2014,34(5):620-624. [8] 项德良,粟 毅,赵凌君,等. 一种基于局部梯度比率特征度量SAR图像相似性的新方法[J].电子学报,2014,42(1):9-13. XIANG De-liang,SU Yi,ZHAO Ling-jun,et al. A local gradient ratio feature measurement based on SAR image similarity method[J].Acta Electronica Sinica,2014,42(1):9-13. [9] 王秀晚.基于眼动信号的混合失真类型图像质量主观数据库的建设研究[D].西安:西安交通大学,2013. WANG Xiu-wan.Study on the construction of mixed eye movement signal distortion type based on image quality subjective database[D].Xi'an:Xi'an Jiaotong University,2013. [10]Yining Deng,Manjunath B S.Hyundoo shin,color image segmentation[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1999. [11]张 敏.基于边缘点位置的图像质量视觉感知模型[D].西安:西安交通大学,2010. ZHANG Min.Image quality visual perception model based on the position of edge points[D].Xi'an:Xi'an Jiaotong University,2010. [12]张晓光,李蕾蕾,高 芳,等.可变码长的OFCDM系统及其仿真分析[J].西安科技大学学报,2012,32(2):264-268. ZHANG Xiao-guang,LI Lei-lei,GAO Fang,et al.Variable code length of OFCDM system and its simulation analysis[J].Journal of Xi'an University of Science and Technology,2012,32(2):264-268.

备注/Memo

备注/Memo:
收稿日期:2015-02-24 责任编辑:高 佳 作者简介:郭 昕(1991-),女,陕西西安人,硕士研究生,E-mail:56185538@qq.com
更新日期/Last Update: 1900-01-01